Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 327(1): H80-H88, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787379

RESUMEN

This study investigated the sensitivity and specificity of identifying heart failure with reduced ejection fraction (HFrEF) from measurements of the intensity and timing of arterial pulse waves. Previously validated methods combining ultrafast B-mode ultrasound, plane-wave transmission, singular value decomposition (SVD), and speckle tracking were used to characterize the compression and decompression ("S" and "D") waves occurring in early and late systole, respectively, in the carotid arteries of outpatients with left ventricular ejection fraction (LVEF) < 40%, determined by echocardiography, and signs and symptoms of heart failure, or with LVEF ≥ 50% and no signs or symptoms of heart failure. On average, the HFrEF group had significantly reduced S-wave intensity and energy, a greater interval between the R wave of the ECG and the S wave, a reduced interval between the S and D waves, and an increase in the S-wave shift (SWS), a novel metric that characterizes the shift in timing of the S wave away from the R wave of the ECG and toward the D wave (all P < 0.01). Receiver operating characteristics (ROCs) were used to quantify for the first time how well wave metrics classified individual participants. S-wave intensity and energy gave areas under the ROC of 0.76-0.83, the ECG-S-wave interval gave 0.85-0.88, and the S-wave shift gave 0.88-0.92. Hence the methods, which are simple to use and do not require complex interpretation, provide sensitive and specific identification of HFrEF. If similar results were obtained in primary care, they could form the basis of techniques for heart failure screening.NEW & NOTEWORTHY We show that heart failure with reduced ejection fraction can be detected with excellent sensitivity and specificity in individual patients by using B-mode ultrasound to detect altered pulse wave intensity and timing in the carotid artery.


Asunto(s)
Insuficiencia Cardíaca , Análisis de la Onda del Pulso , Volumen Sistólico , Humanos , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/diagnóstico por imagen , Femenino , Masculino , Anciano , Persona de Mediana Edad , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/fisiopatología , Función Ventricular Izquierda , Valor Predictivo de las Pruebas , Electrocardiografía , Ecocardiografía , Curva ROC
2.
J Anat ; 242(1): 76-80, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751869

RESUMEN

Many studies of cardiovascular function require a realistic representation of vascular geometry. Corrosion casting has been used to acquire such geometries for many decades. However, the fidelity with which this method reproduces vascular anatomy has not been completely determined. Here we report on the non-linear shrinkage characteristics and exothermic properties of Batson's #17, a widely used casting resin, in model systems and in aortas of rats and rabbits. The setting process was captured using high-resolution photography. Shrinkage ranged from 3.4 ± 1.5% of the diameter in 1 ml plastic syringes (inner diameter 4.8 mm) to 19.6 ± 5.6% in the aorta of rats (diameter 1.5-2.6 mm). In addition, aortic curvature and branching angles changed during setting. These effects should be determined and corrected in studies of vascular geometry where high accuracy is required.


Asunto(s)
Aorta , Modelos Biológicos , Ratas , Conejos , Animales , Molde por Corrosión
3.
Ultrasound Med Biol ; 49(2): 473-488, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36335055

RESUMEN

Arterial pulse waves contain clinically useful information about cardiac performance, arterial stiffness and vessel tone. Here we describe a novel method for non-invasively assessing wave properties, based on measuring changes in blood flow velocity and arterial wall diameter during the cardiac cycle. Velocity and diameter were determined by tracking speckles in successive B-mode images acquired with an ultrafast scanner and plane-wave transmission. Blood speckle was separated from tissue by singular value decomposition and processed to correct biases in ultrasound imaging velocimetry. Results obtained in the rabbit aorta were compared with a conventional analysis based on blood velocity and pressure, employing measurements obtained with a clinical intra-arterial catheter system. This system had a poorer frequency response and greater lags but the pattern of net forward-traveling and backward-traveling waves was consistent between the two methods. Errors in wave speed were also similar in magnitude, and comparable reductions in wave intensity and delays in wave arrival were detected during ventricular dysfunction. The non-invasive method was applied to the carotid artery of a healthy human participant and gave a wave speed and patterns of wave intensity consistent with earlier measurements. The new system may have clinical utility in screening for heart failure.


Asunto(s)
Arterias Carótidas , Disfunción Ventricular , Animales , Humanos , Conejos , Ultrasonografía/métodos , Velocidad del Flujo Sanguíneo , Arterias Carótidas/diagnóstico por imagen , Arteria Carótida Común , Presión Sanguínea , Análisis de la Onda del Pulso
4.
Biotechnol Bioeng ; 119(1): 72-88, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612513

RESUMEN

Effects of fluid dynamics on cells are often studied by growing the cells on the base of cylindrical wells or dishes that are swirled on the horizontal platform of an orbital shaker. The swirling culture medium applies a shear stress to the cells that varies in magnitude and directionality from the center to the edge of the vessel. Computational fluid dynamics methods are used to simulate the flow and hence calculate shear stresses at the base of the well. The shear characteristics at each radial location are then compared with cell behavior at the same position. Previous simulations have generally ignored effects of surface tension and wetting, and results have only occasionally been experimentally validated. We investigated whether such idealized simulations are sufficiently accurate, examining a commonly-used swirling well configuration. The breaking wave predicted by earlier simulations was not seen, and the edge-to-center difference in shear magnitude (but not directionality) almost disappeared, when surface tension and wetting were included. Optical measurements of fluid height and velocity agreed well only with the computational model that incorporated surface tension and wetting. These results demonstrate the importance of including accurate fluid properties in computational models of the swirling well method.


Asunto(s)
Técnicas de Cultivo de Célula , Simulación por Computador , Hidrodinámica , Modelos Biológicos , Células Endoteliales/citología , Resistencia al Corte , Estrés Mecánico
5.
Ultrasound Med Biol ; 48(3): 437-449, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34876322

RESUMEN

Blood flow velocity and wall shear stress (WSS) influence and are influenced by vascular disease. Their measurement is consequently useful in the laboratory and clinic. Contrast-enhanced ultrasound image velocimetry (UIV) can estimate them accurately but the need to inject contrast agents limits utility. Singular value decomposition and high-frame-rate imaging may render contrast agents dispensable. Here we determined whether contrast agent-free UIV can measure flow and WSS. In simulation, accurate measurements were achieved with a signal-to-noise ratio of 13.5 dB or higher. Signal intensity in the rabbit aorta increased monotonically with mechanical index; it was lowest during stagnant flow and uneven across the vessel. In vivo measurements with contrast-free and contrast-enhanced UIV differed by 4.4% and 1.9% for velocity magnitude and angle and by 9.47% for WSS. Bland-Altman analysis of waveforms revealed good agreement between contrast-free and contrast-enhanced UIV. In five rabbits, the root-mean-square errors were as low as 0.022 m/s (0.81%) and 0.11 Pa (1.7%). This study indicates that with an optimised protocol, UIV can assess flow and WSS without contrast agents. Unlike contrast-enhanced UIV, contrast-free UIV could be routinely employed.


Asunto(s)
Aorta , Hemodinámica , Animales , Aorta/diagnóstico por imagen , Velocidad del Flujo Sanguíneo/fisiología , Conejos , Reología/métodos , Resistencia al Corte , Estrés Mecánico , Ultrasonografía/métodos
6.
Atherosclerosis ; 310: 93-101, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32861514

RESUMEN

BACKGROUND AND AIMS: Elevated uptake of plasma macromolecules by the arterial wall is an early event in atherogenesis. Existing optical techniques for detecting macromolecular tracers in the wall have poor depth penetration and hence require en face imaging of flattened arterial segments. Imaging uptake in undistorted curved and branched vessels would be useful in understanding disease development. METHODS: Depth penetration was increased by applying optical clearing techniques. The rat aorto-brachiocephalic junction was imaged intact by confocal microscopy after it had been exposed to circulating rhodamine-labelled albumin in vivo, fixed in situ, excised and then cleared with benzyl alcohol/benzyl benzoate. Tracer uptake was mapped onto a 3D surface mesh of the arterial geometry. RESULTS: Tracer fluorescence was detectable throughout the wall closest to the objective lens and, despite a vessel diameter of c. 1 mm, in the wall on the other side of the artery, across the lumen. By tile scanning, tracer concentrations were mapped in the aorta, the brachiocephalic artery and their junction without opening or flattening either vessel. Optical clearing was also shown to be compatible with immunofluorescent staining and imaging of experimental atherosclerosis. CONCLUSIONS: The technique obviates the need for labour-intensive sample preparation associated with standard en face imaging. More importantly, it preserves arterial geometry, facilitating co-localisation of uptake maps with maps of biomechanical factors, which typically exist on 3D surface meshes. It will permit the correlation of haemodynamic wall shear stress with macromolecule permeability more accurately in regions of high curvature or branching, such as in the coronary arteries.


Asunto(s)
Aorta , Aterosclerosis , Animales , Aterosclerosis/diagnóstico por imagen , Transporte Biológico , Imagenología Tridimensional , Sustancias Macromoleculares , Microscopía Confocal , Ratas
7.
Ultrasound Med Biol ; 45(9): 2456-2470, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31279503

RESUMEN

Contrast-enhanced ultrasound (CEUS) utilising microbubbles shows great potential for visualising lymphatic vessels and identifying sentinel lymph nodes (SLNs) which are valuable for axillary staging in breast cancer patients. However, current CEUS imaging techniques have limitations that affect the accurate visualisation and tracking of lymphatic vessels and SLN. (i) Tissue artefacts and bubble disruption can reduce the image contrast. (ii) Limited spatial and temporal resolution diminishes the amount of information that can be captured by CEUS. (iii) The slow lymph flow makes Doppler-based approaches less effective. This work evaluates on a lymphatic vessel phantom the use of high frame rate (HFR) CEUS for the detection of lymphatic vessels where flow is slow. Specifically, the work particularly investigates the impact of key factors in lymphatic imaging, including ultrasound pressure and flow velocity as well as probe motion during vessel tracking, on bubble disruption and image contrast. Experiments were also conducted to apply HFR CEUS imaging on vasculature in a rabbit popliteal lymph node (LN). Our results show that (i) HFR imaging and singular value decomposition (SVD) filtering can significantly reduce tissue artefacts in the phantom at high clinical frequencies; (ii) the slow flow rate within the phantom makes image contrast and signal persistence more susceptible to changes in ultrasound amplitude or mechanical index (MI), and an MI value can be chosen to reach a compromise between images contrast and bubble disruption under slow flow condition; (iii) probe motion significantly decreases image contrast of the vessel, which can be improved by applying motion correction before SVD filtering; (iv) the optical observation of the impact of ultrasound pressure on HFR CEUS further confirms the importance of optimising ultrasound amplitude and (v) vessels inside rabbit LN with blood flow less than 3 mm/s are clearly visualised.


Asunto(s)
Vasos Linfáticos/diagnóstico por imagen , Ultrasonografía/métodos , Animales , Artefactos , Medios de Contraste , Azul de Evans , Femenino , Procesamiento de Imagen Asistido por Computador , Masculino , Microburbujas , Fantasmas de Imagen , Conejos
8.
Radiology ; 291(3): 642-650, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30990382

RESUMEN

Background Variations in lymph node (LN) microcirculation can be indicative of metastasis. The identification and quantification of metastatic LNs remains essential for prognosis and treatment planning, but a reliable noninvasive imaging technique is lacking. Three-dimensional super-resolution (SR) US has shown potential to noninvasively visualize microvascular networks in vivo. Purpose To study the feasibility of three-dimensional SR US imaging of rabbit LN microvascular structure and blood flow by using microbubbles. Materials and Methods In vivo studies were carried out to image popliteal LNs of two healthy male New Zealand white rabbits aged 6-8 weeks. Three-dimensional, high-frame-rate, contrast material-enhanced US was achieved by mechanically scanning with a linear imaging probe. Individual microbubbles were identified, localized, and tracked to form three-dimensional SR images and super-resolved velocity maps. Acoustic subaperture processing was used to improve image contrast and to generate enhanced power Doppler and color Doppler images. Vessel size and blood flow velocity distributions were evaluated and assessed by using Student paired t test. Results SR images revealed microvessels in the rabbit LN, with branches clearly resolved when separated by 30 µm, which is less than half of the acoustic wavelength and not resolvable by using power or color Doppler. The apparent size distribution of most vessels in the SR images was below 80 µm and agrees with micro-CT data, whereas most of those detected with Doppler techniques were larger than 80 µm in the images. The blood flow velocity distribution indicated that most of the blood flow in rabbit popliteal LN was at velocities lower than 5 mm/sec. Conclusion Three-dimensional super-resolution US imaging using microbubbles allows noninvasive nonionizing visualization and quantification of lymph node microvascular structures and blood flow dynamics with resolution below the wave diffraction limit. This technology has potential for studying the physiologic functions of the lymph system and for clinical detection of lymph node metastasis. Published under a CC BY 4.0 license. Online supplemental material is available for this article.


Asunto(s)
Imagenología Tridimensional/métodos , Ganglios Linfáticos , Microburbujas , Ultrasonografía/métodos , Animales , Estudios de Factibilidad , Ganglios Linfáticos/irrigación sanguínea , Ganglios Linfáticos/diagnóstico por imagen , Masculino , Microvasos/diagnóstico por imagen , Conejos
9.
Eur Radiol Exp ; 2(1): 27, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30302598

RESUMEN

BACKGROUND: To explore the possibility of creating three-dimensional (3D) estimation models for patient-specific wall thickness (WT) maps using patient-specific and cohort-averaged WT, wall shear stress (WSS), and vessel diameter maps in asymptomatic atherosclerotic carotid bifurcations. METHODS: Twenty subjects (aged 75 ± 6 years [mean ± standard deviation], eight women) underwent a 1.5-T MRI examination. Non-gated 3D phase-contrast gradient-echo images and proton density-weighted echo-planar images were retrospectively assessed for WSS, diameter estimation, and WT measurements. Spearman's ρ and scatter plots were used to determine correlations between individual WT, WSS, and diameter maps. A bootstrapping technique was used to determine correlations between 3D cohort-averaged WT, WSS, and diameter maps. Linear regression between the cohort-averaged WT, WSS, and diameter maps was used to predict individual 3D WT. RESULTS: Spearman's ρ averaged over the subjects was - 0.24 ± 0.18 (p < 0.001) and 0.07 ± 0.28 (p = 0.413) for WT versus WSS and for WT versus diameter relations, respectively. Cohort-averaged ρ, averaged over 1000 bootstraps, was - 0.56 (95% confidence interval [- 0.74,- 0.38]) for WT versus WSS and 0.23 (95% confidence interval [- 0.06, 0.52]) for WT versus diameter. Scatter plots did not reveal relationships between individual WT and WSS or between WT and diameter data. Linear relationships between these parameters became apparent after averaging over the cohort. Spearman's ρ between the original and predicted WT maps was 0.21 ± 0.22 (p < 0.001). CONCLUSIONS: With a combination of bootstrapping and cohort-averaging methods, 3D WT maps can be predicted from the individual 3D WSS and diameter maps. The methodology may help to elucidate pathological processes involving WSS in carotid atherosclerosis.

10.
J Biomech Eng ; 137(10): 101003, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26201866

RESUMEN

Assessing the anatomical correlation of atherosclerosis with biomechanical localizing factors is hindered by spatial autocorrelation (SA), wherein neighboring arterial regions tend to have similar properties rather than being independent, and by the use of aggregated data, which artificially inflates correlation coefficients. Resampling data at lower resolution or reducing degrees-of-freedom in significance tests negated effects of SA but only in artificial situations where it occurred at a single length scale. Using Fourier or wavelet transforms to generate autocorrelation-preserving surrogate datasets, and thus to compute the null distribution, avoided this problem. Bootstrap methods additionally circumvented the errors caused by aggregating data. The bootstrap technique showed that wall shear stress (WSS) was significantly correlated with atherosclerotic lesion frequency and endothelial nuclear elongation, but not with the permeability of the arterial wall to albumin, in immature rabbits.


Asunto(s)
Arterias , Análisis Espacial , Estadística como Asunto/métodos , Albúminas/metabolismo , Animales , Arterias/metabolismo , Arterias/fisiología , Análisis de Fourier , Permeabilidad , Conejos , Resistencia al Corte , Estrés Mecánico , Análisis de Ondículas
11.
Ann Biomed Eng ; 43(1): 16-25, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25138165

RESUMEN

The non-uniform distribution of atherosclerosis within the arterial system has been attributed to pro-atherogenic influences of low, oscillatory haemodynamic wall shear stress (WSS) on endothelial cells (EC). This theory is challenged by the changes in lesion location that occur with age in human and rabbit aortas. Furthermore, a number of point-wise comparisons of lesion prevalence and WSS have failed to support it. Here we investigate the hypothesis that multidirectional flow-characterized as the average magnitude of WSS components acting transversely to the mean vector (transWSS)-plays a key role. Maps of lesion prevalence around aortic branch ostia in immature and mature rabbits were compared with equivalent maps of time average WSS, the OSI (an index characterizing oscillatory flow) and transWSS, obtained from computational simulations; Spearman's rank correlation coefficients were calculated for aggregated data and 95% confidence intervals were obtained by bootstrapping methods. Lesion prevalence correlated positively, strongly and significantly with transWSS at both ages. Correlations of lesion prevalence with the other shear metrics were not significant or were significantly lower than those obtained for transWSS. No correlation supported the low, oscillatory WSS theory. The data are consistent with the view that multidirectional near-wall flow is highly pro-atherogenic. Effects of multidirectional flow on EC, and methods for investigating them, are reviewed. The finding that oscillatory flow has pro-inflammatory effects when acting perpendicularly to the long axis of EC but anti-inflammatory effects when acting parallel to it may explain the stronger correlation of lesion prevalence with transWSS than with the OSI.


Asunto(s)
Aterosclerosis/fisiopatología , Hemorreología , Animales , Aorta/patología , Aorta/fisiopatología , Aterosclerosis/patología , Fenómenos Biomecánicos , Humanos , Hidrodinámica , Masculino , Conejos
12.
PLoS One ; 9(12): e115728, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25531765

RESUMEN

Atherosclerosis may be triggered by an elevated net transport of lipid-carrying macromolecules from plasma into the arterial wall. We hypothesised that whether lesions are of the thin-cap fibroatheroma (TCFA) type or are less fatty and more fibrous depends on the degree of elevation of transport, with greater uptake leading to the former. We further hypothesised that the degree of elevation can depend on haemodynamic wall shear stress characteristics and nitric oxide synthesis. Placing a tapered cuff around the carotid artery of apolipoprotein E -/- mice modifies patterns of shear stress and eNOS expression, and triggers lesion development at the upstream and downstream cuff margins; upstream but not downstream lesions resemble the TCFA. We measured wall uptake of a macromolecular tracer in the carotid artery of C57bl/6 mice after cuff placement. Uptake was elevated in the regions that develop lesions in hyperlipidaemic mice and was significantly more elevated where plaques of the TCFA type develop. Computational simulations and effects of reversing the cuff orientation indicated a role for solid as well as fluid mechanical stresses. Inhibiting NO synthesis abolished the difference in uptake between the upstream and downstream sites. The data support the hypothesis that excessively elevated wall uptake of plasma macromolecules initiates the development of the TCFA, suggest that such uptake can result from solid and fluid mechanical stresses, and are consistent with a role for NO synthesis. Modification of wall transport properties might form the basis of novel methods for reducing plaque rupture.


Asunto(s)
Apolipoproteínas E/fisiología , Aterosclerosis/fisiopatología , Arterias Carótidas/patología , Modelos Animales de Enfermedad , Sustancias Macromoleculares/farmacocinética , Placa Aterosclerótica/fisiopatología , Estrés Mecánico , Animales , Aterosclerosis/etiología , Fenómenos Biomecánicos , Arterias Carótidas/cirugía , Simulación por Computador , Hemodinámica , Procesamiento de Imagen Asistido por Computador , Sustancias Macromoleculares/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Placa Aterosclerótica/etiología , Distribución Tisular
13.
Atherosclerosis ; 223(1): 114-21, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22658260

RESUMEN

OBJECTIVE: The distribution of atherosclerotic lesions changes with age in human and rabbit aortas. We investigated if this can be explained by changes in patterns of blood flow and wall shear stress. METHODS: The luminal geometry of thoracic aortas from immature and mature rabbits was obtained by micro-CT of vascular corrosion casts. Blood flow was computed and average maps of wall shear stress were derived. RESULTS: The branch anatomy of the aortic arch varied widely between animals. Wall shear was increased downstream and to a lesser extent upstream of intercostal branch ostia, and a stripe of high shear was located on the dorsal descending aortic wall. The stripe was associated with two vortices generated by aortic arch curvature; their persistence into the descending aorta depended on aortic taper and was more pronounced in mature geometries. These results were not sensitive to the modelling assumptions. CONCLUSIONS: Blood flow characteristics in the rabbit aorta were affected by the degree of taper, which tends to increase with age in the aortic arch and strengthens secondary flows into the descending aorta. Previously-observed lesion distributions correlated better with high than low shear, and age-related changes around branch ostia were not explained by the flow patterns.


Asunto(s)
Envejecimiento , Aorta Torácica/fisiopatología , Enfermedades de la Aorta/fisiopatología , Aterosclerosis/fisiopatología , Hemodinámica , Factores de Edad , Envejecimiento/patología , Animales , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/patología , Enfermedades de la Aorta/diagnóstico por imagen , Enfermedades de la Aorta/patología , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Fenómenos Biomecánicos , Velocidad del Flujo Sanguíneo , Simulación por Computador , Molde por Corrosión , Hidrodinámica , Modelos Cardiovasculares , Conejos , Flujo Sanguíneo Regional , Estrés Mecánico , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA