Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 257: 119238, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815717

RESUMEN

BACKGROUND: Despite plausible behavioral and physiological pathways, limited evidence exists on how daily temperature variability is associated with acute mental health-related episodes. OBJECTIVES: We aimed to explore associations between daily temperature range (DTR) and mental health-related hospital visits using data of all hospital records in New York State during 1995-2014. We further examined factors that may modify these associations, including age, sex, hospital visit type and season. METHODS: Using a case-crossover design with distributed lag non-linear DTR terms (0-6 days), we estimated associations between ZIP Code-level DTR and hospital visits for mood (4.6 million hospital visits), anxiety (2.4 million), adjustment (∼368,000), and schizophrenia disorders (∼211,000), controlling for daily mean temperature, via conditional logistic regression models. We assessed potential heterogeneity by age, sex, hospital visit type (in-patient vs. out-patient), and season (summer, winter, and transition seasons). RESULTS: For all included outcomes, we observed positive associations from period minimum DTR (0.1 °C) until 25th percentile (5.2 °C) and between mean DTR (7.7 °C) and 90th percentile (12.2 °C), beyond which we observed negative associations. For mood disorders, an increase in DTR from 0.1 °C to 12.2 °C was associated with a cumulative 16.0% increase (95% confidence interval [CI]: 12.8, 19.2%) in hospital visit rates. This increase was highest during transition seasons (32.5%; 95%CI: 26.4, 39.0%) compared with summer (10.7%; 95%CI: 4.8, 16.8%) and winter (-1.6%; 95%CI: -7.6, 4.7%). For adjustment and schizophrenia disorders, the strongest associations were seen among the youngest group (0-24 years) with almost no association in the oldest group (65+ years). We observed no evidence for modification by sex and hospital visit type. DISCUSSION: Daily temperature variability was positively associated with mental health-related hospital visits within specific DTR ranges in New York State, after controlling for daily mean temperature. Given uncertainty on how climate change modifies temperature variability, additional research is crucial to comprehend the implications of these findings, particularly under different scenarios of future temperature variability.

2.
Sci Adv ; 10(18): eadm8680, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701214

RESUMEN

Gas and propane stoves emit nitrogen dioxide (NO2) pollution indoors, but the exposures of different U.S. demographic groups are unknown. We estimate NO2 exposure and health consequences using emissions and concentration measurements from >100 homes, a room-specific indoor air quality model, epidemiological risk parameters, and statistical sampling of housing characteristics and occupant behavior. Gas and propane stoves increase long-term NO2 exposure 4.0 parts per billion volume on average across the United States, 75% of the World Health Organization's exposure guideline. This increased exposure likely causes ~50,000 cases of current pediatric asthma from long-term NO2 exposure alone. Short-term NO2 exposure from typical gas stove use frequently exceeds both World Health Organization and U.S. Environmental Protection Agency benchmarks. People living in residences <800 ft2 in size incur four times more long-term NO2 exposure than people in residences >3000 ft2 in size; American Indian/Alaska Native and Black and Hispanic/Latino households incur 60 and 20% more NO2 exposure, respectively, than the national average.


Asunto(s)
Contaminación del Aire Interior , Dióxido de Nitrógeno , Propano , Dióxido de Nitrógeno/análisis , Humanos , Estados Unidos , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Vivienda , Culinaria , Contaminantes Atmosféricos/análisis
3.
Commun Med (Lond) ; 3(1): 118, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752306

RESUMEN

BACKGROUND: Limited evidence exists on how temperature increases are associated with hospital visits from alcohol- and substance-related disorders, despite plausible behavioral and physiological pathways. METHODS: In the present study, we implemented a case-crossover design, which controls for seasonal patterns, long-term trends, and non- or slowly-varying confounders, with distributed lag non-linear temperature terms (0-6 days) to estimate associations between daily ZIP Code-level temperature and alcohol- and substance-related disorder hospital visit rates in New York State during 1995-2014. We also examined four substance-related disorder sub-causes (cannabis, cocaine, opioid, sedatives). RESULTS: Here we show that, for alcohol-related disorders, a daily increase in temperature from the daily minimum (-30.1 °C (-22.2 °F)) to the 75th percentile (18.8 °C (65.8 °F)) across 0-6 lag days is associated with a cumulative 24.6% (95%CI,14.6%-34.6%) increase in hospital visit rates, largely driven by increases on the day of and day before hospital visit, with an association larger outside New York City. For substance-related disorders, we find evidence of a positive association at temperatures from the daily minimum (-30.1 °C (-22.2 °F)) to the 50th percentile (10.4 °C (50.7 °F)) (37.7% (95%CI,27.2%-48.2%), but not at higher temperatures. Findings are consistent across age group, sex, and social vulnerability. CONCLUSIONS: Our work highlights how hospital visits from alcohol- and substance-related disorders are currently impacted by elevated temperatures and could be further affected by rising temperatures resulting from climate change. Enhanced social infrastructure and health system interventions could mitigate these impacts.


We investigated the relationship between temperature and hospital visits related to alcohol and other drugs including cannabis, cocaine, opioids, and sedatives in New York State. We found that higher temperatures resulted in more hospital visits for alcohol. For other drugs, higher temperatures also resulted in more hospital visits but only up to a certain temperature level. Our findings suggest that rising temperatures, including those caused by climate change, may influence hospital visits for alcohol and other drugs, emphasizing the need for appropriate and proportionate social and health interventions, as well as highlighting potential hidden burdens of climate change.

4.
Environ Epidemiol ; 7(4): e258, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37545806

RESUMEN

Myocardial infarction (MI) is a leading cause of morbidity and mortality in the United States and its risk increases with extreme temperatures. Climate change causes variability in weather patterns, including extreme temperature events that disproportionately affect socioeconomically disadvantaged communities. Many studies on the health effects of extreme temperatures have considered community-level socioeconomic disadvantage. Objectives: To evaluate effect modification of the relationship between short-term ambient temperature and MI, by individual-level insurance status (insured vs. uninsured). Methods: We identified MI hospitalizations and insurance status across New York State (NYS) hospitals from 1995 to 2015 in the New York Department of Health Statewide Planning and Research Cooperative System database, using International Classification of Diseases codes. We linked short-term ambient temperature (averaging the 6 hours preceding the event [MI hospitalization]) or nonevent control period in patient residential zip codes. We employed a time-stratified case-crossover study design for both insured and uninsured strata, and then compared the group-specific rate ratios. Results: Over the study period, there were 1,095,051 primary MI admissions, 966,475 (88%) among insured patients. During extremely cold temperatures (<5.8 °C) insured patients experienced reduced rates of MI; this was not observed among the uninsured counterparts. At warmer temperatures starting at the 65th percentile (15.7 °C), uninsured patients had higher rates than insured patients (e.g., for a 6-hour pre-event average temperature increase from the median to the 75th percentile, the rate of MI increased was 2.0% [0.0%-4.0%] higher in uninsured group). Conclusions: Uninsured individuals may face disproportionate rates of MI hospitalization during extreme temperatures.

5.
Environ Int ; 178: 108086, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429056

RESUMEN

INTRODUCTION: Traffic-related air pollution can trigger myocardial infarction (MI). However, the hourly hazard period of exposure to nitrogen dioxide (NO2), a common traffic tracer, for incident MI has not been fully evaluated. Thus, the current hourly US national air quality standard (100 ppb) is based on limited hourly-level effect estimates, which may not adequately protect cardiovascular health. OBJECTIVES: We characterized the hourly hazard period of NO2 exposure for MI in New York state (NYS), USA, from 2000 to 2015. METHODS: For nine cities in NYS, we obtained data on MI hospitalizations from the NYS Department of Health Statewide Planning and Research Cooperative System and hourly NO2 concentrations from the US Environmental Protection Agency's Air Quality System database. We used city-wide exposures and a case-crossover study design with distributed lag non-linear terms to assess the relationship between hourly NO2 concentrations over 24 h and MI, adjusting for hourly temperature and relative humidity. RESULTS: The mean NO2 concentration was 23.2 ppb (standard deviation: 12.6 ppb). In the six hours preceding MI, we found linearly increased risk with increasing NO2 concentrations. At lag hour 0, a 10 ppb increase in NO2 was associated with 0.2 % increased risk of MI (Rate Ratio [RR]: 1.002; 95 % Confidence Interval [CI]: 1.000, 1.004). We estimated a cumulative RR of 1.015 (95 % CI: 1.008, 1.021) for all 24 lag hours per 10 ppb increase in NO2. Lag hours 2-3 had consistently elevated risk ratios in sensitivity analyses. CONCLUSIONS: We found robust associations between hourly NO2 exposure and MI risk at concentrations far lower than current hourly NO2 national standards. Risk of MI was most elevated in the six hours after exposure, consistent with prior studies and experimental work evaluating physiologic responses after acute traffic exposure. Our findings suggest that current hourly standards may be insufficient to protect cardiovascular health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infarto del Miocardio , Humanos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Estudios Cruzados , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Infarto del Miocardio/etiología , Infarto del Miocardio/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Material Particulado/análisis
6.
Front Psychol ; 14: 1092106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325741

RESUMEN

Background: Posttraumatic stress symptoms (PTSS) are common after acute coronary syndrome (ACS) and predict increased morbidity and mortality. Climate change contributes to worse mental and cardiovascular health outcomes, thus, PTSS represent a potential mechanism linking climate change to adverse cardiovascular outcomes. Because people living in areas with lower socioeconomic status (SES) experience greater climate vulnerability, have worse cardiovascular health, and may be more susceptible to PTSS, any effect of temperature on PTSS could be amplified in this population. Methods: Spatial regression models were estimated to test the association of temperature and temperature variability (within-day variability, directed change over time, and absolute change over time), census tract-level SES, and their interaction with PTSS 1 month post-hospital discharge in a longitudinal cohort study comprising 956 patients evaluated for ACS at an urban U.S. academic medical center between November 2013-May 2017. PTSS were self-reported in relation to the ACS event that brought the patient to the hospital. Census tract-level was computed as a composite score from the CDC Social Vulnerability Index, with higher values indicating lower SES. Results: No temperature or temperature variability metrics were associated with PTSS. Lower census tract-level SES was associated with greater PTSS at 1 month. There was a marginally significant interaction of SES with ACS status, such that we only observed evidence of an association among those with ACS. Conclusion: Temperature exposures were not associated with acute CVD-induced PTSS, which could be a result of a small sample size, mismatched timescale, or lack of a true effect. Conversely, lower census tract-level SES was associated with developing worse PTSS 1 month after evaluation for an ACS. This association appeared stronger in individuals with a true ACS. Early interventions to prevent PTSS could promote better mental and CVD outcomes in this at-risk population.

7.
Epidemiology ; 34(5): 700-711, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37255240

RESUMEN

BACKGROUND: People using electricity-dependent durable medical equipment (DME) may be vulnerable to health effects from wildfire smoke, residence near wildfires, or residence in evacuation zones. To our knowledge, no studies have examined their healthcare utilization during wildfires. METHODS: We obtained 2016-2020 counts of residential Zip Code Tabulation Area (ZCTA) level outpatient, emergency department (ED), and inpatient visits made by DME-using Kaiser Permanente Southern California members 45+. We linked counts to daily ZCTA-level wildfire particulate matter (PM) 2.5 and wildfire boundary and evacuation data from the 2018 Woolsey and 2019 Getty wildfires. We estimated the association of lagged (up to 7 days) wildfire PM 2.5 and residence near a fire or in an evacuation zone and healthcare visit frequency with negative binomial and difference-in-differences models. RESULTS: Among 236,732 DME users, 10 µg/m 3 increases in wildfire PM 2.5 concentration were associated with the reduced rate (RR = 0.96; 95% confidence interval [CI] = 0.94, 0.99) of all-cause outpatient visits 1 day after exposure and increased rate on 4 of 5 subsequent days (RR range 1.03-1.12). Woolsey Fire proximity (<20 km) was associated with reduced all-cause outpatient visits, whereas evacuation and proximity were associated with increased inpatient cardiorespiratory visits (proximity RR = 1.45; 95% CI = 0.99, 2.12, evacuation RR = 1.72; 95% CI = 1.00, 2.96). Neither Getty Fire proximity nor evacuation was associated with healthcare visit frequency. CONCLUSIONS: Our results support the hypothesis that wildfire smoke or proximity interrupts DME users' routine outpatient care, via sheltering in place. However, wildfire exposures were also associated with increased urgent healthcare utilization in this vulnerable group.


Asunto(s)
Contaminantes Atmosféricos , Incendios Forestales , Humanos , Contaminantes Atmosféricos/análisis , Equipo Médico Durable , Hospitalización , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/análisis , Humo/efectos adversos , California/epidemiología
8.
Environ Epidemiol ; 7(2): e243, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37064426

RESUMEN

The association between fine particulate matter (PM2.5) and cardiovascular outcomes is well established. To evaluate whether source-specific PM2.5 is differentially associated with cardiovascular disease in New York City (NYC), we identified PM2.5 sources and examined the association between source-specific PM2.5 exposure and risk of hospitalization for myocardial infarction (MI). Methods: We adapted principal component pursuit (PCP), a dimensionality-reduction technique previously used in computer vision, as a novel pattern recognition method for environmental mixtures to apportion speciated PM2.5 to its sources. We used data from the NY Department of Health Statewide Planning and Research Cooperative System of daily city-wide counts of MI admissions (2007-2015). We examined associations between same-day, lag 1, and lag 2 source-specific PM2.5 exposure and MI admissions in a time-series analysis, using a quasi-Poisson regression model adjusting for potential confounders. Results: We identified four sources of PM2.5 pollution: crustal, salt, traffic, and regional and detected three single-species factors: cadmium, chromium, and barium. In adjusted models, we observed a 0.40% (95% confidence interval [CI]: -0.21, 1.01%) increase in MI admission rates per 1 µg/m3 increase in traffic PM2.5, a 0.44% (95% CI: -0.04, 0.93%) increase per 1 µg/m3 increase in crustal PM2.5, and a 1.34% (95% CI: -0.46, 3.17%) increase per 1 µg/m3 increase in chromium-related PM2.5, on average. Conclusions: In our NYC study, we identified traffic, crustal dust, and chromium PM2.5 as potentially relevant sources for cardiovascular disease. We also demonstrated the potential utility of PCP as a pattern recognition method for environmental mixtures.

9.
Sci Rep ; 13(1): 1832, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725956

RESUMEN

Air pollution exposures during training may impact race preformances. We aggregated data on 334 collegiate male track & field athletes from 46 universities across the United States over 2010-2014. Using distributed lag non-linear models, we analyzed the relationship between race time and PM2.5, ozone, and two versions of the Air Quality Index (AQI) exposures up to 21 days prior to the race. We observed a 12.8 (95% CI: 1.3, 24.2) second and 11.5 (95% CI: 0.8, 22.1) second increase in race times from 21 days of PM2.5 exposure (10.0 versus 5.0 µg/m3) and ozone exposure (54.9 versus 36.9 ppm), respectively. Exposure measured by the two-pollutant threshold (PM2.5 and ozone) AQI was not significantly associated with race time; however, the association for summed two-pollutant AQI (PM2.5 plus ozone) was similar to associations observed for the individual pollutants (12.4, 95% CI: 1.8, 23.0 s). Training and competing at elevated air pollution levels, even at exposures within AQI's good-to-moderate classifications, was associated with slower race times. This work provides an initial characterization of the effect of air pollution on running performance and a justification for why coaches should consider approaches to reduce air pollution exposures while training.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Ozono , Carrera , Humanos , Masculino , Estados Unidos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Ozono/efectos adversos , Ozono/análisis
10.
Environ Res ; 224: 115501, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796610

RESUMEN

BACKGROUND: During the COVID-19 pandemic, several cities allocated more public spaces for physical activity and recreation instead of road transport through Open Streets. This policy locally reduces traffic and provides experimental testbeds for healthier cities. However, it may also generate unintended impacts. For instance, Open Streets may impact the levels of exposure to environmental noise but there are no studies assessing these unintended impacts. OBJECTIVES: Using noise complaints from New York City (NYC) as a proxy of annoyance caused by environmental noise, we estimated associations at the census tract level between same-day proportion of Open Streets in a census tract and noise complaints in NYC. METHODS: Using data from summer 2019 (pre-implementation) and summer 2021 (post-implementation), we fit regressions to estimate the association between census tract-level proportion of Open Streets and daily noise complaints, with random effects to account for within-tract correlation and natural splines to allow non-linearity in the estimated association. We accounted for temporal trends and other potential confounders, such as population density and poverty rate. RESULTS: In adjusted analyses, daily street/sidewalk noise complaints were nonlinearly associated with an increasing proportion of Open Streets. Specifically, compared to the mean proportion of Open Streets in a census tract (0.11%), 5% of Open Streets had a 1.09 (95% CI: 0.98, 1.20) and 10% had a 1.21 (95% CI: 1.04, 1.42) times higher rate of street/sidewalk noise complaints. Our results were robust to the choice of data source for identifying Open Streets. CONCLUSION: Our findings suggest that Open Streets in NYC may be linked to an increase in street/sidewalk noise complaints. These results highlight the necessity to reinforce urban policies with a careful analysis for potential unintended impacts to optimize and maximize the benefits of these policies.


Asunto(s)
COVID-19 , Pandemias , Humanos , Ciudad de Nueva York , Ruido , Ciudades
11.
Headache ; 63(1): 94-103, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651537

RESUMEN

OBJECTIVE: To evaluate the association of short-term exposure to overall fine particulate matter of <2.5 µm (PM2.5 ) and wildfire-specific PM2.5 with emergency department (ED) visits for headache. BACKGROUND: Studies have reported associations between PM2.5 exposure and headache risk. As climate change drives longer and more intense wildfire seasons, wildfire PM2.5 may contribute to more frequent headaches. METHODS: Our study included adult Californian members (aged ≥18 years) of a large de-identified commercial and Medicare Advantage claims database from 2006 to 2020. We identified ED visits for primary headache disorders (subtypes: tension-type headache, migraine headache, cluster headache, and "other" primary headache). Claims included member age, sex, and residential zip code. We linked daily overall and wildfire-specific PM2.5 to residential zip code and conducted a time-stratified case-crossover analysis considering 7-day average PM2.5 concentrations, first for primary headache disorders combined, and then by headache subtype. RESULTS: Among 9898 unique individuals we identified 13,623 ED encounters for primary headache disorders. Migraine was the most frequently diagnosed headache (N = 5534/13,623 [47.6%]) followed by "other" primary headache (N = 6489/13,623 [40.6%]). For all primary headache ED diagnoses, we observed an association of 7-day average wildfire PM2.5 (odds ratio [OR] 1.17, 95% confidence interval [CI] 0.95-1.44 per 10 µg/m3 increase) and by subtype we observed increased odds of ED visits associated with 7-day average wildfire PM2.5 for tension-type headache (OR 1.42, 95% CI 0.91-2.22), "other" primary headache (OR 1.40, 95% CI 0.96-2.05), and cluster headache (OR 1.29, 95% CI 0.71-2.35), although these findings were not statistically significant under traditional null hypothesis testing. Overall PM2.5 was associated with tension-type headache (OR 1.29, 95% CI 1.03-1.62), but not migraine, cluster, or "other" primary headaches. CONCLUSIONS: Although imprecise, these results suggest short-term wildfire PM2.5 exposure may be associated with ED visits for headache. Patients, healthcare providers, and systems may need to respond to increased headache-related healthcare needs in the wake of wildfires and on poor air quality days.


Asunto(s)
Contaminantes Atmosféricos , Cefalalgia Histamínica , Cefalea de Tipo Tensional , Incendios Forestales , Adulto , Humanos , Anciano , Estados Unidos , Adolescente , Humo/efectos adversos , Humo/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Cefalalgia Histamínica/inducido químicamente , Hospitalización , Medicare , Material Particulado/efectos adversos , Material Particulado/análisis , California/epidemiología , Servicio de Urgencia en Hospital , Cefalea/epidemiología , Cefalea/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
12.
Am J Epidemiol ; 192(4): 644-657, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36562713

RESUMEN

Distributed lag models (DLMs) are often used to estimate lagged associations and identify critical exposure windows. In a simulation study of prenatal nitrogen dioxide (NO2) exposure and birth weight, we demonstrate that bias amplification and variance inflation can manifest under certain combinations of DLM estimation approaches and time-trend adjustment methods when using low-spatial-resolution exposures with extended lags. Our simulations showed that when using high-spatial-resolution exposure data, any time-trend adjustment method produced low bias and nominal coverage for the distributed lag estimator. When using either low- or no-spatial-resolution exposures, bias due to time trends was amplified for all adjustment methods. Variance inflation was higher in low- or no-spatial-resolution DLMs when using a long-term spline to adjust for seasonality and long-term trends due to concurvity between a distributed lag function and secular function of time. NO2-birth weight analyses in a Massachusetts-based cohort showed that associations were negative for exposures experienced in gestational weeks 15-30 when using high-spatial-resolution DLMs; however, associations were null and positive for DLMs with low- and no-spatial-resolution exposures, respectively, which is likely due to bias amplification. DLM analyses should jointly consider the spatial resolution of exposure data and the parameterizations of the time trend adjustment and lag constraints.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Embarazo , Femenino , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Peso al Nacer , Dióxido de Nitrógeno
13.
Environ Int ; 165: 107303, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635960

RESUMEN

BACKGROUND: In the United States (US), urinary tract infections (UTI) lead to more than 10 million office visits each year. Temperature and season are potentially important risk factors for UTI, particularly in the context of climate change. METHODS: We examined the relationship between ambient temperature and outpatient UTI diagnoses among patients followed from 2015 to 2017 in two California healthcare systems: Kaiser Permanente Southern California (KPSC) and Sutter Health in Northern California. We identified UTI diagnoses in adult patients using diagnostic codes and laboratory records from electronic health records. We abstracted patient age, sex, season of diagnosis, and linked community-level Index of Concentration at the Extremes (ICE-I, a measure of wealth and poverty concentration) based on residential address. Daily county-level average ambient temperature was assembled from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). We implemented distributed lag nonlinear models (DLNM) to assess the association between UTI and lagged daily temperatures. Main analyses were confined to women. In secondary analyses, we stratified by season, healthcare system, and community-level ICE-I. RESULTS: We observed 787,186 UTI cases (89% among women). We observed a threshold association between ambient temperature and UTI among women: an increase in daily temperature from the 5th percentile (6.0 ˚C) to the mean (16.2 ˚C) was associated with a 3.2% (95% CI: 2.4, 3.9%) increase in same-day UTI diagnosis rate, whereas an increase from the mean to 95th percentile was associated with no change in UTI risk (0.0%, 95% CI: -0.7, 0.6%). In secondary analyses, we observed the clearest monotonic increase in the rate of UTI diagnosis with higher temperatures in the fall. Associations did not differ meaningfully by healthcare system or community-level ICE-I. Results were robust to alternate model specifications. DISCUSSION: Increasing temperature was related to higher rate of outpatient UTI, particularly in the shoulder seasons (spring, autumn).


Asunto(s)
Registros Electrónicos de Salud , Infecciones Urinarias , Adulto , California/epidemiología , Estudios Cruzados , Femenino , Humanos , Temperatura , Estados Unidos , Infecciones Urinarias/epidemiología
14.
Curr Environ Health Rep ; 9(2): 183-195, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35389203

RESUMEN

PURPOSE OF REVIEW: Evaluating the environmental health impacts of urban policies is critical for developing and implementing policies that lead to more healthy and equitable cities. This article aims to (1) identify research questions commonly used when evaluating the health impacts of urban policies at different stages of the policy process, (2) describe commonly used methods, and (3) discuss challenges, opportunities, and future directions. RECENT FINDINGS: In the diagnosis and design stages of the policy process, research questions aim to characterize environmental problems affecting human health and to estimate the potential impacts of new policies. Simulation methods using existing exposure-response information to estimate health impacts predominate at these stages of the policy process. In subsequent stages, e.g., during implementation, research questions aim to understand the actual policy impacts. Simulation methods or observational methods, which rely on experimental data gathered in the study area to assess the effectiveness of the policy, can be applied at these stages. Increasingly, novel techniques fuse both simulation and observational methods to enhance the robustness of impact evaluations assessing implemented policies. The policy process consists of interdependent stages, from inception to end, but most reviewed studies focus on single stages, neglecting the continuity of the policy life cycle. Studies assessing the health impacts of policies using a multi-stage approach are lacking. Most studies investigate intended impacts of policies; focusing also on unintended impacts may provide a more comprehensive evaluation of policies.


Asunto(s)
Salud Ambiental , Políticas , Ciudades , Política de Salud , Humanos
15.
Environ Res ; 207: 112229, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699760

RESUMEN

BACKGROUND: While evidence suggests that daily ambient temperature exposure influences stroke risk, little is known about the potential triggering role of ultra short-term temperature. METHODS: We examined the association between hourly temperature and ischemic and hemorrhagic stroke, separately, and identified any relevant lags of exposure among adult New York State residents from 2000 to 2015. Cases were identified via ICD-9 codes from the New York Department of Health Statewide Planning and Reearch Cooperative System. We estimated ambient temperature up to 36 h prior to estimated stroke onset based on patient residential ZIP Code. We applied a time-stratified case-crossover study design; control periods were matched to case periods by year, month, day of week, and hour of day. Additionally, we assessed effect modification by leading stroke risk factors hypertension and atrial fibrillation. RESULTS: We observed 578,181 ischemic and 164,755 hemorrhagic strokes. Among ischemic and hemorrhagic strokes respectively, the mean (standard deviation; SD) patient age was 71.8 (14.6) and 66.8 (17.4) years, with 55% and 49% female. Temperature ranged from -29.5 °C to 39.2 °C, with mean (SD) 10.9 °C (10.3 °C). We found linear relationships for both stroke types. Higher temperature was associated with ischemic stroke over the 7 h following exposure; a 10 °C increase over 7 h was associated with 5.1% (95% Confidence Interval [CI]: 3.8, 6.4%) increase in hourly stroke rate. In contrast, temperature was negatively associated with hemorrhagic stroke over 5 h, with a 5-h cumulative association of -6.2% (95% CI: 8.6, -3.7%). We observed suggestive evidence of a larger association with hemorrhagic stroke among patients with hypertension and a smaller association with ischemic stroke among those with atrial fibrillation. CONCLUSION: Hourly temperature was positively associated with ischemic stroke and negatively associated with hemorrhagic stroke. Our results suggest that ultra short-term weather influences stroke risk and hypertension may confer vulnerability.


Asunto(s)
Accidente Cerebrovascular , Tiempo (Meteorología) , Adulto , Estudios Cruzados , Femenino , Calor , Humanos , Masculino , Factores de Riesgo , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Temperatura
16.
Environ Res ; 200: 111477, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34129866

RESUMEN

BACKGROUND: Accurate and precise estimates of ambient air temperatures that can capture fine-scale within-day variability are necessary for studies of air temperature and health. METHOD: We developed statistical models to predict temperature at each hour in each cell of a 927-m square grid across the Northeast and Mid-Atlantic United States from 2003 to 2019, across ~4000 meteorological stations from the Integrated Mesonet, using inputs such as elevation, an inverse-distance-weighted interpolation of temperature, and satellite-based vegetation and land surface temperature. We used a rigorous spatial cross-validation scheme and spatially weighted the errors to estimate how well model predictions would generalize to new cell-days. We assess the within-county association of temperature and social vulnerability in a heat wave as an example application. RESULTS: We found that a model based on the XGBoost machine-learning algorithm was fast and accurate, obtaining weighted root mean square errors (RMSEs) around 1.6 K, compared to standard deviations around 11.0 K. We found similar accuracy when validating our model on an external dataset from Weather Underground. Assessing predictions from the North American Land Data Assimilation System-2 (NLDAS-2), another hourly model, in the same way, we found it was much less accurate, with RMSEs around 2.5 K. This is likely due to the NLDAS-2 model's coarser spatial resolution, and the dynamic variability of temperature within its grid cells. Finally, we demonstrated the health relevance of our model by showing that our temperature estimates were associated with social vulnerability across the region during a heat wave, whereas the NLDAS-2 showed a much weaker association. CONCLUSION: Our high spatiotemporal resolution air temperature model provides a strong contribution for future health studies in this region.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Meteorología , Modelos Estadísticos , Temperatura , Tiempo (Meteorología)
17.
Environ Res ; 197: 111207, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33932478

RESUMEN

BACKGROUND: Short-term temperature variability has been consistently associated with mortality, with limited evidence for cardiovascular outcomes. Previous studies have used multiple metrics to measure temperature variability; however, those metrics do not capture hour-to-hour changes in temperature. OBJECTIVES: We assessed the correlation between sub-daily temperature-change-over-time metrics and previously-used metrics, and estimated associations with myocardial infarction (MI) hospitalizations. METHODS: Hour-to-hour change-over-time was measured via three metrics: 24-hr mean absolute hourly first difference, 24-hr maximum absolute hourly first difference, and 24-hr mean hourly first difference. We first assessed the Spearman correlations between these metrics and four previously-used metrics (24-hr standard deviation of hourly temperature, 24-hr diurnal temperature range, 48-hr standard deviation of daily minimal and maximal temperatures, and 48-hr difference of daily mean temperature), using hourly data from the North America Land Data Assimilation System-2 Model. Subsequently, we estimated the association between these metrics and primary MI hospitalization in adult residents of New York State for 2000-2015 using a time-stratified case-crossover design. RESULTS: The hour-to-hour change-over-time metrics were correlated, but not synonymous, with previously-used metrics. We observed 809,259 MI, 45% of which were among females and the mean (standard deviation) age was 70 (15). An increase from mean to 90th percentile in mean absolute first difference of temperature was associated with a 2.04% (95% Confidence Interval [CI]: 1.30-2.78%) increase in MI rate. An increase from mean to 90th percentile in mean first difference also yielded a positive association (1.86%; 95%CI: 1.09-2.64%). We observed smaller- or similar-in-magnitude positive associations for previously-used metrics. DISCUSSION: First, short-term hour-to-hour temperature change was positively associated with MI risk. Second, all other variability metrics yielded positive associations with MI, with varying magnitude. In future research on temperature variability, researchers should define their research question, including which aspects of variability they intend to measure, and apply the appropriate metric. ALTERNATIVE: All metrics of temperature variability, including short-term hour-to-hour temperature changes, were positively associated with MI risk, though the magnitude of effect estimates varied by metric.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infarto del Miocardio , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Benchmarking , Estudios Cruzados , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Infarto del Miocardio/epidemiología , New York/epidemiología , América del Norte , Temperatura
18.
Environ Int ; 143: 105910, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32622116

RESUMEN

BACKGROUND: Climate change is increasing global average temperatures, as well as the frequency of extreme weather events. Both low and high ambient temperatures have been associated with elevated mortality; however, little is known about the cardiovascular impacts of hourly temperature. METHODS: We assessed the association between hourly ambient temperature and risk of myocardial infarction (MI) across adult residents of New York State (NYS). We identified cases across NYS hospitals from 2000 to 2015 in the New York Department of Health Statewide Planning and Research Cooperative System dataset, using ICD codes. Hourly ambient temperature was assessed at each patient's residential ZIP code, up to 48 hours prior to MI. We employed a time-stratified case-crossover study design matching case to control periods on hour of day, day of week, month and year. RESULTS: Of the 791,695 primary MI hospital admissions, 45% were female, the mean (standard deviation; SD) age was 70 (15) years, and 49% of cases occurred among New York City residents. The observed temperature range was -29 °C to 39 °C, with a mean of 10.8 °C (10.5 °C). Temperature in the 6 h preceding the MI was positively associated with risk of MI, across the range of observed temperatures, with null or nearly null associations for earlier hours. We estimated a cumulative percent increase in hourly myocardial infarction rate of 7.9% (95% confidence interval [CI]: 5.2%, 10.6%) for an 11 °C (median) to 27 °C (95th percentile) temperature increase for lag hours 0-5. Men, Medicare-ineligible individuals (age < 65), and those experiencing their first MI were most sensitive. CONCLUSION: Our study provides evidence that increases in hourly ambient temperature can trigger myocardial infarction. Health-based definitions of extreme heat events may better capture the deleterious effects of heat by accounting for hourly temperature. Our findings can inform the design of more effective preparedness strategies for the increasingly frequent extreme heat events.


Asunto(s)
Medicare , Infarto del Miocardio , Adulto , Anciano , Estudios Cruzados , Femenino , Calor , Humanos , Masculino , Infarto del Miocardio/epidemiología , Infarto del Miocardio/etiología , Ciudad de Nueva York , Temperatura , Estados Unidos
19.
Environ Health ; 18(1): 58, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31280723

RESUMEN

BACKGROUND: Spatially accurate population data are critical for determining health impacts from many known risk factors. However, the utility of the increasing spatial resolution of disease mapping and environmental exposures is limited by the lack of receptor population data at similar sub-census block spatial scales. METHODS: Here we apply an innovative method (Population Allocation by Occupied Domicile Estimation - ABODE) to disaggregate U.S. Census populations by allocating an average person per household to geospatially-identified residential housing units (RHU). We considered two possible sources of RHU location data: address point locations and building footprint centroids. We compared the performance of ABODE with the common proportional population allocation (PPA) method for estimating the nighttime residential populations within 200 m radii and setback areas (100 - 300 ft) around active underground natural gas storage (UGS) wells (n = 9834) in six U.S. states. RESULTS: Address location data generally outperformed building footprint data in predicting total counts of census residential housing units, with correlations ranging from 0.67 to 0.81 at the census block level. Using residentially-sited addresses only, ABODE estimated upwards of 20,000 physical households with between 48,126 and 53,250 people living within 200 m of active UGS wells - likely encompassing the size of a proposed UGS Wellhead Safety Zone. Across the 9834 active wells assessed, ABODE estimated between 5074 and 10,198 more people living in these areas compare to PPA, and the difference was significant at the individual well level (p = < 0.0001). By either population estimation method, OH exhibits a substantial degree of hyperlocal land use conflict between populations and UGS wells - more so than other states assessed. In some rare cases, population estimates differed by more than 100 people for the small 200 m2 well-areas. ABODE's explicit accounting of physical households confirmed over 50% of PPA predictions as false positives indicated by non-zero predictions in areas absent physical RHUs. CONCLUSIONS: Compared to PPA - in allocating identical population data at sub-census block spatial scales -ABODE provides a more precise population at risk (PAR) estimate with higher confidence estimates of populations at greatest risk. 65% of UGS wells occupy residential urban and suburban areas indicating the unique land use conflicts presented by UGS systems that likely continue to experience population encroachment. Overall, ABODE confirms tens of thousands of homes and residents are likely located within the proposed UGS Wellhead Safety Zone - and in some cases within state's oil and gas well surface setback distances - of active UGS wells.


Asunto(s)
Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Vivienda/estadística & datos numéricos , Gas Natural , Yacimiento de Petróleo y Gas , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...