Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oral Health ; 2: 815728, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35048079

RESUMEN

Background: Periodontitis is a multifactorial, bacteria-mediated chronic inflammatory disease that results in the progressive destruction of the tooth-supporting tissues. It is well-known that saliva from subjects suffering from this disease generally contains higher levels of pro-inflammatory mediators, matrix metalloproteinases (MMP), and bacteria-derived toxic products. The aim of this study was to investigate and compare the effects of saliva from periodontally healthy and diseased subjects on the barrier function and inflammatory response in in vitro models of the oral epithelium. Methods: Unstimulated saliva samples from two groups of subjects, one with a healthy periodontium (n = 12) and one with severe generalized periodontitis (n = 11), were filter-sterilized. All the saliva samples were analyzed using an immunological multiplex assay to determine the levels of various cytokines and MMPs relevant to periodontitis. The impact of saliva on epithelial barrier integrity was assessed by monitoring transepithelial electrical resistance (TER) in an oral epithelium model using the B11 keratinocyte cell line. GMSM-K oral epithelial cells were treated with saliva from both groups to determine their ability to induce the secretion of interleukin-6 (IL-6) and interleukin-8 (IL-8), as determined by an enzyme-linked immunosorbent assay (ELISA). Results: Saliva from the periodontitis subjects contained significantly higher concentrations of matrix metalloproteinase-8 (MMP-8), matrix metalloproteinase-9 (MMP-9), IL-8, and C-X-C motif chemokine ligand 1 (CXCL1) compared to saliva from the healthy subjects. Saliva from the healthy and periodontitis subjects affected cytokine secretion and TER in a similar manner. More specifically, saliva from both groups increased TER and induced IL-6 and IL-8 secretion in the in vitro oral epithelium models used. Conclusion: Independently of the presence or absence of periodontitis, saliva can increase the relative TER and the secretion of IL-6 and IL-8 in in vitro models of the oral epithelium.

2.
Cell Physiol Biochem ; 52(5): 984-1002, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30977984

RESUMEN

BACKGROUND/AIMS: The epithelial sodium channel (ENaC) expressed in alveolar epithelial cells plays a major role in lung liquid clearance at birth and lung edema resorption in adulthood. We showed previously that αENaC mRNA expression is downregulated in part via posttranscriptional regulation of mRNA stability. In the present work, the role of the αENaC 3' untranslated region (3'UTR) in the regulation of mRNA stability was studied further. METHODS: Quantitative reverse transcription PCR (qRT-PCR) was performed to investigate the expression of αENaC in alveolar epithelial cells. The role of the αENaC 3'UTR was evaluated through sequential deletions. RNA affinity chromatography and mass spectrometry were achieved to investigate the nature of the proteins that could bind this sequence. The function of these proteins was assessed through knockdown and overexpression in vitro. RESULTS: First, we found that αENaC mRNA half-life was much shorter than expected when using a transcriptionally controlled plasmid expression system compared to Actinomycin D treatment. Sequential deletions of the αENaC 3'UTR revealed that the αENaC 3'UTR plays an important role in the modulation of αENaC mRNA stability, and that there is a complex stabilizing and destabilizing interplay between different regions of the 3'UTR that modulate this process. Finally, we identified RNA-binding proteins that interact with the αENaC 3'UTR and showed that Dhx36 and Tial1 are involved in the decrease in αENaC mRNA stability via the proximal region of its 3'UTR. CONCLUSION: Taken together, these findings indicate that the αENaC 3'UTR plays an important role in modulating transcript levels, and Dhx36 and Tial1 seem to be involved in posttranscriptional regulation of αENaC expression in alveolar epithelial cells.


Asunto(s)
Regiones no Traducidas 3' , Células Epiteliales/metabolismo , Canales Epiteliales de Sodio/biosíntesis , Regulación de la Expresión Génica , Alveolos Pulmonares/metabolismo , Estabilidad del ARN , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Células Epiteliales/citología , Canales Epiteliales de Sodio/genética , Masculino , Alveolos Pulmonares/citología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley
3.
Pflugers Arch ; 470(11): 1615-1631, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30088081

RESUMEN

The epithelial Na channel (ENaC) plays an essential role in lung physiology by modulating the amount of liquid lining the respiratory epithelium. Here, we tested the effect of breaking alveolar epithelial cell barrier integrity on ENaC expression and function. We found that either mechanical wounding by scratching the monolayer or disruption of tight junction with EDTA induced a ~ 50% decrease of α,ß and γENaC mRNA expression and an 80% reduction of ENaC short-circuit current (Isc) at 6 h. Scratching the cell monolayer generated a Ca2+ wave that spread from the margin of the scratch to distant cells. Pretreatment with BAPTA-AM, an intracellular Ca2+ chelator, abolished the effect of mechanical wounding and EDTA on αENaC mRNA expression, suggesting that [Ca2+]i is important for this modulation. We tested the hypothesis that a mechanosensitive channel such as TRPV4, a cationic channel known to increase [Ca2+]i, could mediate this effect. Activation of the channel with the TRPV4 specific agonist GSK-1016790A (GSK) decreased αENAC mRNA expression and almost completely abolished ENaC Isc. Pretreatment of alveolar epithelial cells with HC-067047 (HC0), a specific TRPV4 antagonist, reduced the extent of αENAC mRNA downregulation by mechanical wounding and EDTA. Altogether, our results suggest that mechanical stress induced by wounding or TRPV4-mediated loss of tight junction increases [Ca2+]i and elicits a Ca2+ wave that affects ENaC expression and function away from the site of injury. These data are important to better understand how Ca2+ signaling affects lung liquid clearance in injured lungs.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Calcio/metabolismo , Canales Epiteliales de Sodio/genética , Lesión Pulmonar/metabolismo , Animales , Células Cultivadas , Regulación hacia Abajo , Canales Epiteliales de Sodio/metabolismo , Masculino , Mecanotransducción Celular , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA