Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Chemosphere ; 341: 140113, 2023 Nov.
Article En | MEDLINE | ID: mdl-37690568

Direct measurements of gaseous elemental mercury (GEM) exchanges over global ecosystems are challenging and require extensive and costly measurement systems. Here, we explore the use of atmospheric GEM concentration variability and passive samplers to assess underlying ecosystem GEM exchanges at two rural temperate forests in the northeastern United States. We find strong temporal alignments between atmospheric GEM concentration declines and ecosystem GEM deposition in spring at both forests, which followed patterns of CO2 and suggests that ambient air GEM concentration monitoring provides a proxy measurement to assess forest GEM sinks. In fall, we observe GEM concentration increases and reversal of GEM fluxes to emissions, but with poor temporal alignments. Diel GEM concentration variability did not correspond to diel patterns of ecosystem GEM fluxes, which is driven by boundary layer dynamics with different atmospheric mixing depths during day- and nighttime. Passive samplers (PASs) deployed to measure vertical GEM gradients across six heights throughout one of the forest canopies showed excellent agreements with active measurements in detecting seasonal concentration patterns at all deployment heights. We find frequent qualitative agreement between the direction of active and PAS derived concentration gradients, but small concentration differences over small (1.3 and 4.9 m) distances prevent a quantitative comparison of methods. Furthermore, time-averaged GEM concentration gradient measurements are always biased towards stable nighttime periods, while ecosystem GEM fluxes are dominated by daytime exchanges, which results in the inability of integrated measurements such as PAS to correctly quantify forest GEM exchanges. We conclude that concentration measurements both via active and passive sampling can serve as proxies to assess underlying ecosystem GEM sinks and sources, but that the use of passive samplers to quantify GEM exchange via gradient measurements is limited due their strong nighttime biases.


Mercury , Ecosystem , Gases , Forests , Atmosphere
2.
Nat Commun ; 14(1): 2722, 2023 05 11.
Article En | MEDLINE | ID: mdl-37169778

Sources of neurotoxic mercury in forests are dominated by atmospheric gaseous elemental mercury (GEM) deposition, but a dearth of direct GEM exchange measurements causes major uncertainties about processes that determine GEM sinks. Here we present three years of forest-level GEM deposition measurements in a coniferous forest and a deciduous forest in northeastern USA, along with flux partitioning into canopy and forest floor contributions. Annual GEM deposition is 13.4 ± 0.80 µg m-2 (coniferous forest) and 25.1 ± 2.4 µg m-2 (deciduous forest) dominating mercury inputs (62 and 76% of total deposition). GEM uptake dominates in daytime during active vegetation periods and correlates with CO2 assimilation, attributable to plant stomatal uptake of mercury. Non-stomatal GEM deposition occurs in the coniferous canopy during nights and to the forest floor in the deciduous forest and accounts for 24 and 39% of GEM deposition, respectively. Our study shows that GEM deposition includes various pathways and is highly ecosystem-specific, which complicates global constraints of terrestrial GEM sinks.


Air Pollutants , Mercury , Tracheophyta , Mercury/analysis , Ecosystem , Environmental Monitoring , Forests , Air Pollutants/analysis
3.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article En | MEDLINE | ID: mdl-34272289

Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem-atmosphere GEM exchange using tower-based micrometeorological methods in a midlatitude hardwood forest. We measured an annual GEM deposition of 25.1 µg ⋅ m-2 (95% CI: 23.2 to 26.7 1 µg ⋅ m-2), which is five times larger than wet deposition of mercury from the atmosphere. Our observed annual GEM deposition accounts for 76% of total atmospheric mercury deposition and also is three times greater than litterfall mercury deposition, which has previously been used as a proxy measure for GEM deposition in forests. Plant GEM uptake is the dominant driver for ecosystem GEM deposition based on seasonal and diel dynamics that show the forest GEM sink to be largest during active vegetation growing periods and middays, analogous to photosynthetic carbon dioxide assimilation. Soils and litter on the forest floor are additional GEM sinks throughout the year. Our study suggests that mercury loading to this forest was underestimated by a factor of about two and that global forests may constitute a much larger global GEM sink than currently proposed. The larger than anticipated forest GEM sink may explain the high mercury loads observed in soils across rural forests, which impair water quality and aquatic biota via watershed Hg export.


Air Pollutants/metabolism , Mercury/metabolism , Trees/metabolism , Air Pollutants/analysis , Altitude , Ecosystem , Environmental Monitoring , Forests , Mercury/analysis , Soil/chemistry , Trees/chemistry
...