Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Wirel Pers Commun ; : 1-23, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37360139

RESUMEN

This work proposes a stochastic model of the coordinator units of each wireless body area network (WBAN) in a multi-WBAN scenario. In a Smart Home environment, multiple patients can come into the vicinity of each other while each of them is wearing a WBAN configuration for monitoring body vitals. Thus, while multiple WBANs coexist, the individual WBAN coordinators require adaptive transmission strategies in order to balance between maximizing the likelihood of data transmission and minimizing the chances of packet loss due to inter-BAN interference. Accordingly, the proposed work is divided into two phases. In the offline phase, each WBAN coordinator is modeled stochastically and the problem of their transmission strategy has been modeled as a Markov Decision Process(MDP). The channel conditions and buffer status that influence the transmission decision are taken to be the state parameters in MDP. The formulation is solved offline, prior to deployment of the network to find out the optimal transmission strategies for various input conditions. Such transmission policies for inter-WBAN communication are then incorporated into the coordinator nodes in the post-deployment phase. The work is simulated using Castalia and the results demonstrate the robustness of the proposed scheme in handling both favorable and unfavorable operating conditions.

2.
Small ; 19(21): e2205606, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36748864

RESUMEN

Due to its beneficial pharmacological properties, ferritin (Ftn) is considered as an interesting drug delivery vehicle to alleviate the cardiotoxicity of doxorubicin (DOX) in chemotherapy. However, the encapsulation of DOX in Ftn suffers from heavy precipitation and low protein recovery yield which limits its full potential. Here, a new DOX encapsulation strategy by cysteine-maleimide conjugation is proposed. In order to demonstrate that this strategy is more efficient compared to the other approaches, DOX is encapsulated in Ftn variants carrying different surface charges. Furthermore, in contrast to the common belief, this data show that DOX molecules are also found to bind non-specifically to the surface of Ftn. This can be circumvented by the use of Tris(2-carboxyethyl)phosphine (TCEP) during encapsulation or by washing with acidic buffer. The biocompatibility studies of the resulting DOX Ftn variants in MCF-7 and MHS cancer cells shows a complex relationship between the cytotoxicity, the DOX loading and the different surface charges of Ftn. Further investigation on the cell uptake mechanism provides reasonable explanations for the cytotoxicity results and reveals that surface charging of Ftn hinders its transferrin receptor 1 (TfR-1) mediated cellular uptake in MCF-7 cells.


Asunto(s)
Doxorrubicina , Ferritinas , Humanos , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Células MCF-7
3.
ChemTexts ; 8(1): 9, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223376

RESUMEN

Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs.

4.
ACS Nano ; 14(7): 8012-8023, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32568521

RESUMEN

Poly(ethylenimine) (PEI) is frequently used as transfection agent for delivery of nucleic acids to the cytosol. After endocytosis of complexes of PEI and nucleic acids, a fraction of them can escape endosomes/lysosomes and reach the cytosol. One proposed mechanism is the so-called proton sponge effect, which involves buffering of the lysosomal pH by PEI. There are however also reports that report the absence of such buffering. In this work, the buffering capacity of PEI of the lysosomal pH was investigated in situ by combining PEI and pH-sensing ratiometric fluorophores in a single carrier particle. As carrier particles, hereby capsules were used, which were composed of polyelectrolyte walls based on layer-by-layer assembly, with the pH sensors located inside the capsule cavities. In this way, the local pH around individual particles could be monitored during the whole process of endocytosis. Results demonstrate the pH-buffering capability of PEI, which prevents the strong acidification of lysosomes containing PEI. This effect was related to the presence of PEI and was not related to the overall charge of the carrier particles. In case PEI was added in molecular form, no buffering of pH could be observed by endocytosed encapsulated pH-sensing ratiometric fluorophores. Co-localization experiments demonstrated that this was due to the fact that internalized free PEI and the encapsulated pH-sensing ratiometric fluorophores were not located in the same lysosomes. Missing co-localization might explain why also in other studies no pH buffering was found; in the case of co-delivery of PEI, the pH sensors could be clearly observed.


Asunto(s)
Polietileneimina , Protones , Cápsulas , Concentración de Iones de Hidrógeno , Lisosomas , Transfección
5.
Bioconjug Chem ; 30(11): 2751-2762, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31621306

RESUMEN

In solution, nanoparticles may be conceptually compartmentalized into cores and engineered surface coatings. Recent advances allow for simple and accurate characterization of nanoparticle cores and surface shells. After introduction into a complex biological environment, adsorption of biological molecules to the nanoparticle surface as well as a loss of original surface components occur. Thus, colloidal nanoparticles in the context of the biological environment are hybrid materials with complex structure, which may result in different chemical, physical, and biological outcomes as compared to the original engineered nanoparticles. In this review, we will discuss building up an engineered inorganic nanoparticle from its inside core to its outside surface and following its degradation in a biological environment from its outside to its inside. This will involve the way to synthesize selected inorganic nanoparticles. Then, we will discuss the environmental changes upon exposure of these nanoparticles to biological media and their uptake by cells. Next, the intracellular fate of nanoparticles and their degradation will be discussed. Based on these examples, the need to see nanoparticles in the context of the biological environment as dynamic hybrid materials will be highlighted.


Asunto(s)
Biopolímeros/química , Coloides/química , Ambiente , Compuestos Inorgánicos/química , Nanopartículas/química , Humanos
6.
ACS Nano ; 13(6): 6151-6169, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31124656

RESUMEN

Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles.

7.
Adv Drug Deliv Rev ; 138: 117-132, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30315833

RESUMEN

Tremendous efforts have been devoted to the development of future nanomedicines that can be specifically designed to incorporate responsive elements that undergo modification in structural properties upon external triggers. One potential use of such stimuli-responsive materials is to release encapsulated cargo upon excitation by an external trigger. Today, such stimuli-response materials allow for spatial and temporal tunability, which enables the controlled delivery of compounds in a specific and dose-dependent manner. This potentially is of great interest for medicine (e.g. allowing for remotely controlled drug delivery to cells, etc.). Among the different external exogenous and endogenous stimuli used to control the desired release, light and magnetic fields offer interesting possibilities, allowing defined, real time control of intracellular releases. In this review we highlight the use of stimuli-responsive controlled release systems that are able to respond to light and magnetic field triggers for controlling the release of encapsulated cargo inside cells. We discuss established approaches and technologies and describe prominent examples. Special attention is devoted towards polymer capsules and polymer vesicles as containers for encapsulated cargo molecules. The advantages and disadvantages of this methodology in both, in vitro and in vivo models are discussed. An overview of challenges associate with the successful translation of those stimuli-responsive materials towards future applications in the direction of potential clinical use is given.


Asunto(s)
Sistemas de Liberación de Medicamentos , Animales , Endosomas , Calor , Humanos , Luz , Lisosomas , Campos Magnéticos
8.
ACS Appl Bio Mater ; 2(8): 3245-3256, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35030767

RESUMEN

Polyelectrolyte capsules made of different biodegradable and nonbiodegradable polymers can be designed as systems for effective encapsulation and delivery of compounds. The objective of this work was to synthesize biocompatible and biodegradable capsules (<1 µm) by the layer-by-layer (LbL) approach using alginate (ALGI) and poly-l-arginine (PARG) polyelectrolytes with a pH-sensitive outer layer of EUDRAGIT L 100 (EuL) polymer. Those capsules were loaded with curcumin as a model therapeutic drug, which possesses antioxidant, anti-inflammatory, and anticancer activity. Encapsulation of drugs inside capsules protects its therapeutic activity and increases its bioavailability. We report the capsule stability, loading efficiency, drug release, as well as capsule degradation studies as a function of pH. Furthermore, in vitro biocompatibility studies of capsules including cell viability and uptake studies were performed using HeLa cells. The here synthesized capsules exhibited good reproducibility, spherical shape, and high monodispersibility. The capsules showed good loading efficiency and drug release profile dependent upon pH environment. The in vitro studies indicate that the capsules exhibited acceptable biocompatibility and are highly internalized by cells. Our study thus suggests that alginate LbL capsules could be used as an efficient drug carrier with effective encapsulation and successful in vitro release of cargo in the cell.

9.
Bioconjug Chem ; 29(4): 1261-1265, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29461809

RESUMEN

Silver nanoparticles were grown in aqueous solution, without the presence of typical surfactant molecules, but under the presence of different proteins. The shape of the resulting silver nanoparticles could be tuned by the selection of the types of proteins. The amount of accessible lysine groups was found to be mainly responsible for the anisotropy in nanoparticle formation. Viability measurements of cells exposed to protein capped spherical or prism-shaped NPs did not reveal differences between both geometries. Thus, in the case of protein-only coated Ag NPs, no shape-induced toxicity was found under the investigated exposure conditions.


Asunto(s)
Lisina/química , Nanopartículas del Metal/química , Nanotecnología/métodos , Albúmina Sérica Bovina/química , Plata/química , Animales , Anisotropía , Bovinos , Supervivencia Celular , Células HeLa , Humanos , Lisina/toxicidad , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/ultraestructura , Albúmina Sérica Bovina/toxicidad , Plata/toxicidad
10.
Sci Total Environ ; 568: 819-828, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27306826

RESUMEN

The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids may change their physicochemical properties along their life cycle, and appropriate characterization is required during the different stages.


Asunto(s)
Membrana Celular/metabolismo , Coloides/análisis , Endocitosis/fisiología , Nanopartículas/análisis , Técnicas de Cultivo de Célula , Células Cultivadas , Coloides/química , Coloides/metabolismo , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA