Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Pathology ; 56(4): 548-555, 2024 Jun.
Article En | MEDLINE | ID: mdl-38580614

Early induction response assessment with day-21 bone marrow (D21-BM) is commonly performed in patients with FLT3-mutated acute myeloid leukaemia (AML), where detection of residual leukaemia (RL; blasts ≥5%) typically results in the administration of a second induction course. However, whether D21-BM results predict for RL at the end of first induction has not been systematically assessed. This study evaluates the predictive role of D21-BM morphology in detecting RL following first induction. Between August 2018 and March 2022, all patients with FLT3-AML receiving 7+3 plus midostaurin, with D21-BM performed, were identified. Correlation between D21-BM morphology vs D21-BM ancillary flow/molecular results, as well as vs D28-BM end of first induction response, were retrospectively reviewed. Subsequently, D21-BMs were subjected to anonymised morphological re-assessments by independent haematopathologists (total in triplicate per patient). Of nine patients included in this study, three (33%) were designated to have RL at D21-BM, all of whom entered complete remission at D28-BM. Furthermore, only low-level measurable residual disease was detected in all three cases by flow or molecular methods at D21-BM, hence none proceeded to a second induction. Independent re-evaluations of these cases failed to correctly reassign D21-BM responses, yielding a final false positive rate of 33%. In summary, based on morphology alone, D21-BM assessment following 7+3 intensive induction plus midostaurin for FLT3-AML incorrectly designates RL in some patients; thus correlating with associated flow and molecular results is essential before concluding RL following first induction. Where remission status is unclear, repeat D28-BMs should be performed.


Bone Marrow , Leukemia, Myeloid, Acute , Neoplasm, Residual , Staurosporine , fms-Like Tyrosine Kinase 3 , Humans , Staurosporine/analogs & derivatives , Staurosporine/therapeutic use , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Female , Middle Aged , Adult , Retrospective Studies , Bone Marrow/pathology , Aged , Mutation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Remission Induction
2.
Arterioscler Thromb Vasc Biol ; 44(5): e145-e167, 2024 May.
Article En | MEDLINE | ID: mdl-38482696

BACKGROUND: New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS: Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS: Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS: Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.


Gene Expression Profiling , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Proto-Oncogene Proteins c-fos , Transcriptome , rho GTP-Binding Proteins , Animals , Humans , Mice , Cells, Cultured , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Endothelial Cells/metabolism , Gene Expression Profiling/methods , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic/genetics , Phenotype , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/genetics , Signal Transduction , Single-Cell Analysis , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics
3.
Sci Rep ; 13(1): 8484, 2023 05 25.
Article En | MEDLINE | ID: mdl-37230999

Balanced samples from 12 countries (N = 12,000) were surveyed about their reasons for valuing nature and pro-environmental behaviors. Results showed that people were least likely to endorse moral-based reasons for valuing nature, as compared to five other reasons (wellbeing benefits, nature's intrinsic value, health benefits, economic value, identity-based reasons). However, moral- and identity-based reasons (relative to the other four reasons) for valuing nature were the strongest predictors of pro-environmental behavior across three different methods (correlations, linear mixed models, and relative importance analysis) and two pro-environmental behavior categories (consumer behavior and activism). In other words, the reasons for valuing nature most associated with pro-environmental behavior also garnered the weakest support, presenting a potential dilemma for those hoping to leverage values to promote pro-environmental behavior. We also identify a possible mechanism (awareness of one's environmental impact) to explain why moral- and identity-based reasons for valuing nature best predict behavior. Finally, we examine between-country variability in the endorsement of the six reasons and the reasons' associations with pro-environmental behaviors, and country-level factors that may explain between-country variability in these outcomes. We discuss these results in the context of broader literature that has focused on an intrinsic vs. instrumental valuation of nature dichotomy.


Environment , Morals , Humans , Surveys and Questionnaires , Consumer Behavior
4.
Cells ; 12(4)2023 02 06.
Article En | MEDLINE | ID: mdl-36831193

Conjugated bile acids (BA) are significantly elevated in several liver pathologies and in the metastatic lymph node (LN). However, the effects of BAs on pathological lymphangiogenesis remains unknown. The current study explores the effects of BAs on lymphangiogenesis. BA levels were elevated in the LN and serum of Mdr2-/- mice (model of sclerosing cholangitis) compared to control mice. Liver and LN tissue sections showed a clear expansion of the lymphatic network in Mdr2-/- mice, indicating activated lymphangiogenic pathways. Human lymphatic endothelial cells (LECs) expressed BA receptors and a direct treatment with conjugated BAs enhanced invasion, migration, and tube formation. BAs also altered the LEC metabolism and upregulated key metabolic genes. Further, BAs induced the production of reactive oxygen species (ROS), that in turn phosphorylated the redox-sensitive kinase p90RSK, an essential regulator of endothelial cell dysfunction and oxidative stress. Activated p90RSK increased the SUMOylation of the Prox1 transcription factor and enhanced VEGFR3 expression and 3-D LEC invasion. BA-induced ROS in the LECs, which led to increased levels of Yes-associated protein (YAP), a lymphangiogenesis regulator. The suppression of cellular YAP inhibited BA-induced VEGFR3 upregulation and lymphangiogenic mechanism. Overall, our data shows the expansion of the lymphatic network in presclerotic liver disease and establishes a novel mechanism whereby BAs promote lymphangiogenesis.


Lymphangiogenesis , Vascular Endothelial Growth Factor A , Mice , Animals , Humans , Reactive Oxygen Species/metabolism , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Steroids/metabolism , Bile Acids and Salts/metabolism
5.
Microcirculation ; 29(6-7): e12780, 2022 10.
Article En | MEDLINE | ID: mdl-35972391

The role of the lymphatic system in maintaining tissue homeostasis and a number of different pathophysiological conditions has been well established. The complex and delicate structure of the lymphatics along with the limitations of conventional imaging techniques make lymphatic imaging particularly difficult. Thus, in-depth high-resolution imaging of lymphatic system is key to understanding the progression of lymphatic diseases and cancer metastases and would greatly benefit clinical decisions. In recent years, the advancement of imaging technologies and development of new tracers suitable for clinical applications has enabled imaging of the lymphatic system in both clinical and pre-clinical settings. In this current review, we have highlighted the advantages and disadvantages of different modern techniques such as near infra-red spectroscopy (NIRS), positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI) and fluorescence optical imaging, that has significantly impacted research in this field and has led to in-depth insights into progression of pathological states. This review also highlights the use of current imaging technologies, and tracers specific for immune cell markers to identify and track the immune cells in the lymphatic system that would help understand disease progression and remission in immune therapy regimen.


Lymphatic System , Lymphatic Vessels , Lymphatic System/diagnostic imaging , Positron-Emission Tomography , Magnetic Resonance Imaging , Tomography, X-Ray Computed/methods , Lymphatic Vessels/diagnostic imaging
6.
Cells ; 10(11)2021 11 09.
Article En | MEDLINE | ID: mdl-34831316

Cholangiocarcinoma (CCA), or cancer of bile duct epithelial cells, is a very aggressive malignancy characterized by early lymphangiogenesis in the tumor microenvironment (TME) and lymph node (LN) metastasis which correlate with adverse patient outcome. However, the specific roles of lymphatic endothelial cells (LECs) that promote LN metastasis remains unexplored. Here we aimed to identify the dynamic molecular crosstalk between LECs and CCA cells that activate tumor-promoting pathways and enhances lymphangiogenic mechanisms. Our studies show that inflamed LECs produced high levels of chemokine CXCL5 that signals through its receptor CXCR2 on CCA cells. The CXCR2-CXCL5 signaling axis in turn activates EMT (epithelial-mesenchymal transition) inducing MMP (matrix metalloproteinase) genes such as GLI, PTCHD, and MMP2 in CCA cells that promote CCA migration and invasion. Further, rate of mitochondrial respiration and glycolysis of CCA cells was significantly upregulated by inflamed LECs and CXCL5 activation, indicating metabolic reprogramming. CXCL5 also induced lactate production, glucose uptake, and mitoROS. CXCL5 also induced LEC tube formation and increased metabolic gene expression in LECs. In vivo studies using CCA orthotopic models confirmed several of these mechanisms. Our data points to a key finding that LECs upregulate critical tumor-promoting pathways in CCA via CXCR2-CXCL5 axis, which further augments CCA metastasis.


Bile Duct Neoplasms/metabolism , Chemokine CXCL5/metabolism , Cholangiocarcinoma/metabolism , Lymphatic System/pathology , Receptors, Interleukin-8B/metabolism , Signal Transduction , Animals , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Endothelial Cells/pathology , Energy Metabolism , Epithelial-Mesenchymal Transition/genetics , Focal Adhesions/metabolism , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Humans , Inflammation/genetics , Inflammation/pathology , Lactic Acid/biosynthesis , Lymph Nodes/pathology , Lymphangiogenesis/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Models, Biological , Reactive Oxygen Species/metabolism , Up-Regulation
7.
Am J Pathol ; 191(12): 2052-2063, 2021 12.
Article En | MEDLINE | ID: mdl-34509441

Increased lymphangiogenesis and lymph node metastasis, the important prognostic indicators of aggressive hepatobiliary malignancies such as hepatocellular cancer and cholangiocarcinoma, are associated with poor patient outcome. The liver produces 25% to 50% of total lymphatic fluid in the body and has a dense network of lymphatic vessels. The lymphatic system plays critical roles in fluid homeostasis and inflammation and immune response. Yet, lymphatic vessel alterations and function are grossly understudied in the context of liver pathology. Expansion of the lymphatic network has been documented in clinical samples of liver cancer; and although largely overlooked in the liver, tumor-induced lymphangiogenesis is an important player, increasing tumor metastasis in several cancers. This review aims to provide a detailed perspective on the current knowledge of alterations in the hepatic lymphatic system during liver malignancies, as well as various molecular signaling mechanisms and growth factors that may provide future targets for therapeutic intervention. In addition, the review also addresses current mechanisms and bottlenecks for effective therapeutic targeting of tumor-associated lymphangiogenesis.


Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Lymphangiogenesis , Lymphatic Metastasis/therapy , Animals , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/therapy , Bile Ducts, Intrahepatic/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/therapy , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Lymphangiogenesis/genetics , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Lymphatic Vessels/pathology , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Signal Transduction/genetics , Signal Transduction/physiology
8.
Indian J Surg Oncol ; 12(Suppl 1): 93-102, 2021 Apr.
Article En | MEDLINE | ID: mdl-33994734

Head and neck cancers (HNC) are extremely aggressive, highly recurrent, and the sixth most common cancer worldwide. Neuropeptide substance P, along with its primary receptor, neurokinin-1 (NK-1R), is overexpressed in HNC and is a central player in inflammation and growth and metastasis of several cancers. However, the precise SP-mediated signaling that promotes HNC progression remains ill defined. Using a panel of HNC lines, in this study, we investigated the effects of SP on proliferation and migration of HNC. Tumor cells were also treated with SP and alterations in inflammatory cytokines and chemokines, and their cognate receptors were analyzed by real-time PCR. Furthermore, we investigated the role of SP in inducing epithelial-mesenchymal transition (EMT), and matrix metalloproteases that promote tumor invasion. Our results showed that SP significantly increased tumor cell proliferation and migration and induced the expression of several genes that promote tumor growth, invasion, and metastasis which was suppressed by a specific NK1R antagonist L-703606. SP also activated NFκB that was suppressed on inhibiting NK1R. Collectively, our data shows that SP-NK1R-mediated inflammatory signaling comprises an important signaling axis in promoting HNC and may prove to be effective clinical target against HNC cells that are resistant to traditional therapy.

9.
Exp Biol Med (Maywood) ; 245(13): 1073-1086, 2020 07.
Article En | MEDLINE | ID: mdl-32594767

IMPACT STATEMENT: Hypoxia contributes to tumor aggressiveness and promotes growth of many solid tumors that are often resistant to conventional therapies. In order to achieve successful therapeutic strategies targeting different cancer types, it is necessary to understand the molecular mechanisms and signaling pathways that are induced by hypoxia. Aberrant tumor vasculature and alterations in cellular metabolism and drug resistance due to hypoxia further confound this problem. This review focuses on the implications of hypoxia in an inflammatory TME and its impact on the signaling and metabolic pathways regulating growth and progression of cancer, along with changes in lymphangiogenic and angiogenic mechanisms. Finally, the overarching role of hypoxia in mediating therapeutic resistance in cancers is discussed.


Cell Hypoxia/physiology , Neoplasms/pathology , Tumor Microenvironment/physiology , Cell Respiration/physiology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Neoplasms/metabolism
10.
Am J Pathol ; 190(4): 900-915, 2020 04.
Article En | MEDLINE | ID: mdl-32035061

Tumor metastasis to the draining lymph nodes is critical in patient prognosis and is tightly regulated by molecular interactions mediated by lymphatic endothelial cells (LECs). The underlying mechanisms remain undefined in the head and neck squamous cell carcinomas (HNSCCs). Using HNSCC cells and LECs we determined the mechanisms mediating tumor-lymphatic cross talk. The effects of a pentacyclic triterpenoid, methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF3DODA-Me), a potent anticancer agent, were studied on cancer-lymphatic interactions. In response to inflammation, LECs induced the chemokine (C-X-C motif) ligand 9/10/11 chemokines with a concomitant increase in the chemokine (C-X-C motif) receptor 3 (CXCR3) in tumor cells. CF3DODA-Me showed antiproliferative effects on tumor cells, altered cellular bioenergetics, suppressed matrix metalloproteinases and chemokine receptors, and the induction of CXCL11-CXCR3 axis and phosphatidylinositol 3-kinase/AKT pathways. Tumor cell migration to LECs was inhibited by blocking CXCL11 whereas recombinant CXCL11 significantly induced tumor migration, epithelial-to-mesenchymal transition, and matrix remodeling. Immunohistochemical analysis of HNSCC tumor arrays showed enhanced expression of CXCR3 and increased lymphatic vessel infiltration. Furthermore, The Cancer Genome Atlas RNA-sequencing data from HNSCC patients also showed a positive correlation between CXCR3 expression and lymphovascular invasion. Collectively, our data suggest a novel mechanism for cross talk between the LECs and HNSCC tumors through the CXCR3-CXCL11 axis and elucidate the role of the triterpenoid CF3DODA-Me in abrogating several of these tumor-promoting pathways.


Chemokine CXCL11/metabolism , Endothelial Cells/pathology , Head and Neck Neoplasms/pathology , Inflammation/pathology , Receptors, CXCR3/metabolism , Squamous Cell Carcinoma of Head and Neck/secondary , Antineoplastic Agents/pharmacology , Chemokine CXCL11/genetics , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/metabolism , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/metabolism , Lymphatic Metastasis , Prognosis , Receptors, CXCR3/genetics , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , Triterpenes/pharmacology , Tumor Cells, Cultured
11.
Front Med (Lausanne) ; 6: 293, 2019.
Article En | MEDLINE | ID: mdl-31921870

Cholangiocarcinoma (CCA), or cancer of the biliary epithelium is a relatively rare but aggressive form of biliary duct cancer which has a 5-year survival rate post metastasis of 2%. Although a number of risk factors are established for CCA growth and progression, a careful evaluation of the existing literature on CCA reveals that an inflammatory environment near the biliary tree is the most common causal link between the risk factors and the development of CCA. The fact that inflammation predisposes affected individuals to CCA is further bolstered by multiple observations where the presence and maintenance of an inflammatory microenvironment at the site of the primary tumor plays a significant role in the development and metastasis of CCA. In addition, mechanisms activating the tumor vasculature and enhancing angiogenesis and lymphangiogenesis significantly contribute to CCA aggressiveness and metastasis. This review aims to address the role of an inflammatory microenvironment-CCA crosstalk and will present the basic concepts, observations, and current perspectives from recent research studies in the field of tumor stroma of CCA.

12.
Immunol Res ; 65(5): 1089-1094, 2017 10.
Article En | MEDLINE | ID: mdl-28914425

Platelet factor 4 (PF4) is a megakaryocyte-/platelet-derived chemokine with diverse functions as a regulator of vascular and immune biology. PF4 has a central role in vessel injury responses, innate immune cell responses, and T-helper cell differentiation. We have now discovered that PF4 has a direct role in B cell differentiation in the bone marrow. Mice lacking PF4 (PF4-/- mice) had fewer developing B cells in the bone marrow beginning after the pre-pro-B cell stage of differentiation. In vitro, PF4 increased the differentiation of hematopoietic progenitors to B cell lineage cells, indicating that PF4 has a direct effect on B cell differentiation. STAT5 activation is essential in early B cell development and PF4 increased the phosphorylation of STAT5. Taken together, these data demonstrate that PF4 has an important role in increasing B cell differentiation in the bone marrow environment.


B-Lymphocytes/immunology , B-Lymphocytes/physiology , Bone Marrow Cells/physiology , Platelet Factor 4/metabolism , Animals , Cell Differentiation , Cell Lineage , Cells, Cultured , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , STAT5 Transcription Factor/metabolism
...