Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int J Cancer ; 147(4): 1117-1130, 2020 08 15.
Article En | MEDLINE | ID: mdl-31863596

Targeting of the TRAIL-DR4/5 pathway was proposed as a promising approach for specific induction of apoptosis in cancer cells. Clinical trials, however, showed inadequate efficiency of TRAIL as a monotherapy. It is a widely held view that the application of multifunctional molecules or combination therapy may lead to substantial improvement. Here, we demonstrate the effectiveness and safety of a novel chimeric protein, AD-O51.4, which is a TRAIL equipped with positively charged VEGFA-derived effector peptides. The study was performed in multiple cancer cell line- and patient-derived xenografts. A pharmacokinetic profile was established in monkeys. AD-O51.4 strongly inhibits tumor growth, even leading to complete long-term tumor remission. Neither mice nor monkeys treated with AD-O51.4 demonstrate symptoms of drug toxicity. AD-O51.4 exhibits a satisfactory half-life in plasma and accumulates preferentially in tumors. The cellular mechanism of AD-O51.4 activity involves both cytotoxic effects in tumor cells and antiangiogenic effects on the endothelium. The presence of DRs in cancer cells is crucial for AD-O51.4-driven apoptosis execution. The TRAIL component of the fusion molecule serves as an apoptosis inducer and a cellular anchor for the effector peptides in TRAIL-sensitive and TRAIL-resistant cancer cells, respectively. The FADD-dependent pathway, however, seems to be not indispensable in death signal transduction; thus, AD-O51.4 is capable of bypassing the refractoriness of TRAIL. AD-O51.4-driven cell death, which exceeds TRAIL activity, is achieved due to the N-terminally fused polypeptide, containing VEGFA-derived effector peptides. The high anticancer efficiency of AD-O51.4 combined with its safety has led to the entry of AD-O51.4 into toxicological studies.


Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Recombinant Fusion Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Xenograft Model Antitumor Assays/methods , A549 Cells , Animals , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , HCT116 Cells , HT29 Cells , Hep G2 Cells , Humans , Mice, SCID , Neoplasms/pathology , Protein Engineering/methods , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Burden/drug effects
2.
Med Chem Res ; 26(12): 3354-3366, 2017.
Article En | MEDLINE | ID: mdl-29170613

An optimization of the guanidylation process by verifying the efficacy of common guanylation reagents in order to obtain the guanidine derivatives of indolo[2,3-b]quinoline has been performed. As a result, a high-yield procedure using N,N'-di-Boc-N''-triflylguanidine was applied to synthesize the guanidine derivative of indolo[2,3-b]quinoline 1 in a gram scale for specific in vitro and in vivo biological research. Extensive studies on the antiproliferative activity against eight human tumor cell lines were completed. Compound 1 revealed the highest activity against A549 lung adenocarcinoma and MCF7 breast cancer cell lines. Thus, 1 was evaluated for the in vivo anticancer activity against 4T1 mammary gland carcinoma and KLN205 murine lung carcinoma in mouse models. The anticancer effect was observed in the KLN205 model with a 37% tumor growth inhibition at the 20 mg/kg dose. This anticancer activity of 1 was comparable to that of cyclophosphamide which inhibited murine lung tumor growth in the range of 27-43% at the dose of 100 mg/kg. The biochemistry research after 1 admission, including measurements of blood parameters like alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and urea and creatinine, were also performed.

3.
Invest New Drugs ; 32(6): 1155-66, 2014 Dec.
Article En | MEDLINE | ID: mdl-25182378

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors became promising molecules for selective targeting of tumor cells without affecting normal tissue. Unfortunately, cancer cells have developed a number of mechanisms that confer resistance to TRAIL\Apo2L-induced apoptosis, which substantiates the need for development of alternative therapeutic strategies. Here we present a recombinant variant of TRAIL\Apo2L peptide, named AD-O53.2, fused to the peptide-derived from Smac/Diablo protein-the natural inhibitor of the apoptotic X-linked IAP (XIAP) protein considered as a pro-apoptotic agent. The proposed mechanism of action for this construct involves specific targeting of the tumor by TRAIL\Apo2L followed by activation and internalization of pro-apoptotic peptide into the cancer cells. While in the cytoplasm , the Smac\Diablo peptide inhibits activity of X-linked IAP (XIAP) proteins and promotes caspase-mediated apoptosis. AD-O53.2 construct was expressed in E.coli and purified by Ion Exchange Chromatography (IEC). Derived protein was initially characterized by circular dichroism spectroscopy (CD), HPLC-SEC chromatography, surface plasmon resonance, protease activation and cell proliferation assays. Our Smac/Diablo-TRAIL fusion variant was tested against a panel of cancer cells (including lung, colorectal, pancreatic, liver, kidney and uterine) and showed a potent cytotoxic effect with the IC50 values in femtomolar range for the most sensitive cell lines, while it remained ineffective against non-transformed HUVEC cells as well as isolated normal human and rat hepatocytes. Importantly, the construct was well tolerated by animals and significantly reduced the rate of the tumor growth in colon and lung adenocarcinoma animal models.


Antineoplastic Agents , Carrier Proteins , Drug Resistance, Neoplasm/drug effects , Recombinant Fusion Proteins , TNF-Related Apoptosis-Inducing Ligand , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis Regulatory Proteins , Carrier Proteins/pharmacology , Carrier Proteins/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Colorectal Neoplasms/drug therapy , Female , Hepatocytes/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lung Neoplasms/drug therapy , Mice, SCID , Mitochondrial Proteins/genetics , Oligopeptides/genetics , Rats , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/therapeutic use , Xenograft Model Antitumor Assays
...