Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968292

RESUMEN

A small, nucleotide-binding domain, the ATP-cone, is found at the N-terminus of most ribonucleotide reductase (RNR) catalytic subunits. By binding adenosine triphosphate (ATP) or deoxyadenosine triphosphate (dATP) it regulates the enzyme activity of all classes of RNR. Functional and structural work on aerobic RNRs has revealed a plethora of ways in which dATP inhibits activity by inducing oligomerisation and preventing a productive radical transfer from one subunit to the active site in the other. Anaerobic RNRs, on the other hand, store a stable glycyl radical next to the active site and the basis for their dATP-dependent inhibition is completely unknown. We present biochemical, biophysical, and structural information on the effects of ATP and dATP binding to the anaerobic RNR from Prevotella copri. The enzyme exists in a dimer-tetramer equilibrium biased towards dimers when two ATP molecules are bound to the ATP-cone and tetramers when two dATP molecules are bound. In the presence of ATP, P. copri NrdD is active and has a fully ordered glycyl radical domain (GRD) in one monomer of the dimer. Binding of dATP to the ATP-cone results in loss of activity and increased dynamics of the GRD, such that it cannot be detected in the cryo-EM structures. The glycyl radical is formed even in the dATP-bound form, but the substrate does not bind. The structures implicate a complex network of interactions in activity regulation that involve the GRD more than 30 Å away from the dATP molecules, the allosteric substrate specificity site and a conserved but previously unseen flap over the active site. Taken together, the results suggest that dATP inhibition in anaerobic RNRs acts by increasing the flexibility of the flap and GRD, thereby preventing both substrate binding and radical mobilisation.


Asunto(s)
Adenosina Trifosfato , Unión Proteica , Ribonucleótido Reductasas , Ribonucleótido Reductasas/metabolismo , Ribonucleótido Reductasas/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Anaerobiosis , Nucleótidos de Desoxiadenina/metabolismo , Dominio Catalítico , Conformación Proteica , Especificidad por Sustrato , Multimerización de Proteína , Modelos Moleculares
2.
Nat Commun ; 13(1): 2700, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577776

RESUMEN

Ribonucleotide reductase (RNR) is an essential enzyme that catalyzes the synthesis of DNA building blocks in virtually all living cells. NrdR, an RNR-specific repressor, controls the transcription of RNR genes and, often, its own, in most bacteria and some archaea. NrdR senses the concentration of nucleotides through its ATP-cone, an evolutionarily mobile domain that also regulates the enzymatic activity of many RNRs, while a Zn-ribbon domain mediates binding to NrdR boxes upstream of and overlapping the transcription start site of RNR genes. Here, we combine biochemical and cryo-EM studies of NrdR from Streptomyces coelicolor to show, at atomic resolution, how NrdR binds to DNA. The suggested mechanism involves an initial dodecamer loaded with two ATP molecules that cannot bind to DNA. When dATP concentrations increase, an octamer forms that is loaded with one molecule each of dATP and ATP per monomer. A tetramer derived from this octamer then binds to DNA and represses transcription of RNR. In many bacteria - including well-known pathogens such as Mycobacterium tuberculosis - NrdR simultaneously controls multiple RNRs and hence DNA synthesis, making it an excellent target for novel antibiotics development.


Asunto(s)
Ribonucleótido Reductasas , Streptomyces coelicolor , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Regulación Bacteriana de la Expresión Génica , Nucleótidos/química , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Streptomyces coelicolor/metabolismo
3.
Biochemistry ; 61(2): 92-106, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34941255

RESUMEN

Ribonucleotide reductase (RNR) is an essential enzyme with a complex mechanism of allosteric regulation found in nearly all living organisms. Class I RNRs are composed of two proteins, a large α-subunit (R1) and a smaller ß-subunit (R2) that exist as homodimers, that combine to form an active heterotetramer. Aquifex aeolicus is a hyperthermophilic bacterium with an unusual RNR encoding a 346-residue intein in the DNA sequence encoding its R2 subunit. We present the first structures of the A. aeolicus R1 and R2 (AaR1 and AaR2, respectively) proteins as well as the biophysical and biochemical characterization of active and inactive A. aeolicus RNR. While the active oligomeric state and activity regulation of A. aeolicus RNR are similar to those of other characterized RNRs, the X-ray crystal structures also reveal distinct features and adaptations. Specifically, AaR1 contains a ß-hairpin hook structure at the dimer interface, which has an interesting π-stacking interaction absent in other members of the NrdAh subclass, and its ATP cone houses two ATP molecules. We determined structures of two AaR2 proteins: one purified from a construct lacking the intein (AaR2) and a second purified from a construct including the intein sequence (AaR2_genomic). These structures in the context of metal content analysis and activity data indicate that AaR2_genomic displays much higher iron occupancy and activity compared to AaR2, suggesting that the intein is important for facilitating complete iron incorporation, particularly in the Fe2 site of the mature R2 protein, which may be important for the survival of A. aeolicus in low-oxygen environments.


Asunto(s)
Proteínas Bacterianas/química , Ribonucleótido Reductasas/química , Regulación Alostérica , Aquifex/química , Aquifex/metabolismo , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribonucleótido Reductasas/metabolismo
4.
Front Mol Biosci ; 8: 713608, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381817

RESUMEN

The essential enzyme ribonucleotide reductase (RNR) is highly regulated both at the level of overall activity and substrate specificity. Studies of class I, aerobic RNRs have shown that overall activity is downregulated by the binding of dATP to a small domain known as the ATP-cone often found at the N-terminus of RNR subunits, causing oligomerization that prevents formation of a necessary α2ß2 complex between the catalytic (α2) and radical generating (ß2) subunits. In some relatively rare organisms with RNRs of the subclass NrdAi, the ATP-cone is found at the N-terminus of the ß subunit rather than more commonly the α subunit. Binding of dATP to the ATP-cone in ß results in formation of an unusual ß4 tetramer. However, the structural basis for how the formation of the active complex is hindered by such oligomerization has not been studied. Here we analyse the low-resolution three-dimensional structures of the separate subunits of an RNR from subclass NrdAi, as well as the α4ß4 octamer that forms in the presence of dATP. The results reveal a type of oligomer not previously seen for any class of RNR and suggest a mechanism for how binding of dATP to the ATP-cone switches off catalysis by sterically preventing formation of the asymmetrical α2ß2 complex.

5.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 4): 95-104, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33830074

RESUMEN

A novel member of the family 3 carbohydrate-binding modules (CBM3s) is encoded by a gene (Cthe_0271) in Clostridium thermocellum which is the most highly expressed gene in the bacterium during its growth on several types of biomass substrates. Surprisingly, CtCBM3-0271 binds to at least two different types of xylan, instead of the common binding of CBM3s to cellulosic substrates. CtCBM3-0271 was crystallized and its three-dimensional structure was solved and refined to a resolution of 1.8 Å. In order to learn more about the role of this type of CBM3, a comparative study with its orthologue from Clostridium clariflavum (encoded by the Clocl_1192 gene) was performed, and the three-dimensional structure of CcCBM3-1192 was determined to 1.6 Šresolution. Carbohydrate binding by CcCBM3-1192 was found to be similar to that by CtCBM3-0271; both exhibited binding to xylan rather than to cellulose. Comparative structural analysis of the two CBM3s provided a clear functional correlation of structure and binding, in which the two CBM3s lack the required number of binding residues in their cellulose-binding strips and thus lack cellulose-binding capabilities. This is an enigma, as CtCBM3-0271 was reported to be a highly expressed protein when the bacterium was grown on cellulose. An additional unexpected finding was that CcCBM3-1192 does not contain the calcium ion that was considered to play a structural stabilizing role in the CBM3 family. Despite the lack of calcium, the five residues that form the calcium-binding site are conserved. The absence of calcium results in conformational changes in two loops of the CcCBM3-1192 structure. In this context, superposition of the non-calcium-binding CcCBM3-1192 with CtCBM3-0271 and other calcium-binding CBM3s reveals a much broader two-loop region in the former compared with CtCBM3-0271.


Asunto(s)
Clostridiales/metabolismo , Clostridium thermocellum/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Clostridiales/química , Clostridiales/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Cristalización , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Polisacáridos/química , Polisacáridos/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
6.
J Biol Inorg Chem ; 24(6): 863-877, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31414238

RESUMEN

Outside of the photosynthetic machinery, high-valent manganese cofactors are rare in biology. It was proposed that a recently discovered subclass of ribonucleotide reductase (RNR), class Id, is dependent on a Mn2(IV,III) cofactor for catalysis. Class I RNRs consist of a substrate-binding component (NrdA) and a metal-containing radical-generating component (NrdB). Herein we utilize a combination of EPR spectroscopy and enzyme assays to underscore the enzymatic relevance of the Mn2(IV,III) cofactor in class Id NrdB from Facklamia ignava. Once formed, the Mn2(IV,III) cofactor confers enzyme activity that correlates well with cofactor quantity. Moreover, we present the X-ray structure of the apo- and aerobically Mn-loaded forms of the homologous class Id NrdB from Leeuwenhoekiella blandensis, revealing a dimanganese centre typical of the subclass, with a tyrosine residue maintained at distance from the metal centre and a lysine residue projected towards the metals. Structural comparison of the apo- and metal-loaded forms of the protein reveals a refolding of the loop containing the conserved lysine and an unusual shift in the orientation of helices within a monomer, leading to the opening of a channel towards the metal site. Such major conformational changes have not been observed in NrdB proteins before. Finally, in vitro reconstitution experiments reveal that the high-valent manganese cofactor is not formed spontaneously from oxygen, but can be generated from at least two different reduced oxygen species, i.e. H2O2 and superoxide (O 2·- ). Considering the observed differences in the efficiency of these two activating reagents, we propose that the physiologically relevant mechanism involves superoxide.


Asunto(s)
Manganeso/metabolismo , Ribonucleótido Reductasas/metabolismo , Aerococcaceae/metabolismo , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Flavobacteriaceae/metabolismo , Radicales Libres/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/genética , Superóxidos/metabolismo
7.
J Biol Chem ; 293(41): 15889-15900, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30166338

RESUMEN

Class I ribonucleotide reductase (RNR) consists of a catalytic subunit (NrdA) and a radical-generating subunit (NrdB) that together catalyze reduction of ribonucleotides to their corresponding deoxyribonucleotides. NrdB from the firmicute Facklamia ignava is a unique fusion protein with N-terminal add-ons of a glutaredoxin (Grx) domain followed by an ATP-binding domain, the ATP cone. Grx, usually encoded separately from the RNR operon, is a known RNR reductant. We show that the fused Grx domain functions as an efficient reductant of the F. ignava class I RNR via the common dithiol mechanism and, interestingly, also via a monothiol mechanism, although less efficiently. To our knowledge, a Grx that uses both of these two reaction mechanisms has not previously been observed with a native substrate. The ATP cone is in most RNRs an N-terminal domain of the catalytic subunit. It is an allosteric on/off switch promoting ribonucleotide reduction in the presence of ATP and inhibiting RNR activity in the presence of dATP. We found that dATP bound to the ATP cone of F. ignava NrdB promotes formation of tetramers that cannot form active complexes with NrdA. The ATP cone bound two dATP molecules but only one ATP molecule. F. ignava NrdB contains the recently identified radical-generating cofactor MnIII/MnIV We show that NrdA from F. ignava can form a catalytically competent RNR with the MnIII/MnIV-containing NrdB from the flavobacterium Leeuwenhoekiella blandensis In conclusion, F. ignava NrdB is fused with a Grx functioning as an RNR reductant and an ATP cone serving as an on/off switch.


Asunto(s)
Glutarredoxinas/metabolismo , Ribonucleótido Reductasas/metabolismo , Aerococcaceae/química , Catálisis , Nucleótidos de Desoxiadenina/metabolismo , Flavobacteriaceae/química , Transferencia de Gen Horizontal , Glutarredoxinas/química , Glutarredoxinas/genética , Oxidación-Reducción , Unión Proteica , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Ribonucleótido Reductasas/genética
8.
Elife ; 72018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29388911

RESUMEN

Ribonucleotide reductases (RNRs) are key enzymes in DNA metabolism, with allosteric mechanisms controlling substrate specificity and overall activity. In RNRs, the activity master-switch, the ATP-cone, has been found exclusively in the catalytic subunit. In two class I RNR subclasses whose catalytic subunit lacks the ATP-cone, we discovered ATP-cones in the radical-generating subunit. The ATP-cone in the Leeuwenhoekiella blandensis radical-generating subunit regulates activity via quaternary structure induced by binding of nucleotides. ATP induces enzymatically competent dimers, whereas dATP induces non-productive tetramers, resulting in different holoenzymes. The tetramer forms by interactions between ATP-cones, shown by a 2.45 Å crystal structure. We also present evidence for an MnIIIMnIV metal center. In summary, lack of an ATP-cone domain in the catalytic subunit was compensated by transfer of the domain to the radical-generating subunit. To our knowledge, this represents the first observation of transfer of an allosteric domain between components of the same enzyme complex.


Asunto(s)
Adenosina Trifosfato/metabolismo , Flavobacteriaceae/enzimología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Regulación Alostérica , Cristalografía por Rayos X , Conformación Proteica , Multimerización de Proteína
9.
J Biol Chem ; 292(46): 19044-19054, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28972190

RESUMEN

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, used in DNA synthesis and repair. Two different mechanisms help deliver the required electrons to the RNR active site. Formate can be used as reductant directly in the active site, or glutaredoxins or thioredoxins reduce a C-terminal cysteine pair, which then delivers the electrons to the active site. Here, we characterized a novel cysteine-rich C-terminal domain (CRD), which is present in most class II RNRs found in microbes. The NrdJd-type RNR from the bacterium Stackebrandtia nassauensis was used as a model enzyme. We show that the CRD is involved in both higher oligomeric state formation and electron transfer to the active site. The CRD-dependent formation of high oligomers, such as tetramers and hexamers, was induced by addition of dATP or dGTP, but not of dTTP or dCTP. The electron transfer was mediated by an array of six cysteine residues at the very C-terminal end, which also coordinated a zinc atom. The electron transfer can also occur between subunits, depending on the enzyme's oligomeric state. An investigation of the native reductant of the system revealed no interaction with glutaredoxins or thioredoxins, indicating that this class II RNR uses a different electron source. Our results indicate that the CRD has a crucial role in catalytic turnover and a potentially new terminal reduction mechanism and suggest that the CRD is important for the activities of many class II RNRs.


Asunto(s)
Actinomycetales/química , Proteínas Bacterianas/química , Cisteína/química , Ribonucleótido Reductasas/química , Dedos de Zinc , Actinomycetales/genética , Actinomycetales/metabolismo , Regulación Alostérica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/genética , Cisteína/metabolismo , Transporte de Electrón , Modelos Moleculares , Oxidación-Reducción , Filogenia , Dominios Proteicos , Multimerización de Proteína , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
10.
PLoS One ; 11(1): e0146316, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26731480

RESUMEN

The Gram-positive, anaerobic, cellulolytic, thermophile Clostridium (Ruminiclostridium) thermocellum secretes a multi-enzyme system called the cellulosome to solubilize plant cell wall polysaccharides. During the saccharolytic process, the enzymatic composition of the cellulosome is modulated according to the type of polysaccharide(s) present in the environment. C. thermocellum has a set of eight alternative RNA polymerase sigma (σ) factors that are activated in response to extracellular polysaccharides and share sequence similarity to the Bacillus subtilis σI factor. The aim of the present work was to demonstrate whether individual C. thermocellum σI-like factors regulate specific cellulosomal genes, focusing on C. thermocellum σI6 and σI3 factors. To search for putative σI6- and σI3-dependent promoters, bioinformatic analysis of the upstream regions of the cellulosomal genes was performed. Because of the limited genetic tools available for C. thermocellum, the functionality of the predicted σI6- and σI3-dependent promoters was studied in B. subtilis as a heterologous host. This system enabled observation of the activation of 10 predicted σI6-dependent promoters associated with the C. thermocellum genes: sigI6 (itself, Clo1313_2778), xyn11B (Clo1313_0522), xyn10D (Clo1313_0177), xyn10Z (Clo1313_2635), xyn10Y (Clo1313_1305), cel9V (Clo1313_0349), cseP (Clo1313_2188), sigI1 (Clo1313_2174), cipA (Clo1313_0627), and rsgI5 (Clo1313_0985). Additionally, we observed the activation of 4 predicted σI3-dependent promoters associated with the C. thermocellum genes: sigI3 (itself, Clo1313_1911), pl11 (Clo1313_1983), ce12 (Clo1313_0693) and cipA. Our results suggest possible regulons of σI6 and σI3 in C. thermocellum, as well as the σI6 and σI3 promoter consensus sequences. The proposed -35 and -10 promoter consensus elements of σI6 are CNNAAA and CGAA, respectively. Additionally, a less conserved CGA sequence next to the C in the -35 element and a highly conserved AT sequence three bases downstream of the -10 element were also identified as important nucleotides for promoter recognition. Regarding σI3, the proposed -35 and -10 promoter consensus elements are CCCYYAAA and CGWA, respectively. The present study provides new clues for understanding these recently discovered alternative σI factors.


Asunto(s)
Bacillus subtilis/metabolismo , Biomasa , Clostridium thermocellum/metabolismo , Regulón/fisiología , Factor sigma/metabolismo , Bacillus subtilis/genética , Celulosomas/genética , Celulosomas/metabolismo , Clostridium thermocellum/genética
11.
Genome Announc ; 3(5)2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26404597

RESUMEN

We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, wherein the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions, whereas enzymes are integrated via type-II interactions.

12.
PeerJ ; 3: e1126, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26401442

RESUMEN

Non-cellulosomal processive endoglucanase 9I (Cel9I) from Clostridium thermocellum is a modular protein, consisting of a family-9 glycoside hydrolase (GH9) catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b), separated by linker regions. GH9 does not show cellulase activity when expressed without CBM3c and CBM3b and the presence of the CBM3c was previously shown to be essential for endoglucanase activity. Physical reassociation of independently expressed GH9 and CBM3c modules (containing linker sequences) restored 60-70% of the intact Cel9I endocellulase activity. However, the mechanism responsible for recovery of activity remained unclear. In this work we independently expressed recombinant GH9 and CBM3c with and without their interconnecting linker in Escherichia coli. We crystallized and determined the molecular structure of the GH9/linker-CBM3c heterodimer at a resolution of 1.68 Å to understand the functional and structural importance of the mutual spatial orientation of the modules and the role of the interconnecting linker during their re-association. Enzyme activity assays and isothermal titration calorimetry were performed to study and compare the effect of the linker on the re-association. The results indicated that reassembly of the modules could also occur without the linker, albeit with only very low recovery of endoglucanase activity. We propose that the linker regions in the GH9/CBM3c endoglucanases are important for spatial organization and fixation of the modules into functional enzymes.

13.
FEMS Microbiol Lett ; 362(3): 1-10, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25673657

RESUMEN

Ruminococcus albus, a cellulolytic bacterium, is a critical member of the rumen community. Ruminococcus albus lacks a classical cellulosome complex, but it possesses a unique family 37 carbohydrate-binding module (CBM37), which is integrated into a variety of carbohydrate-active enzymes. We developed a potential molecular tool for functional phylotyping of the R. albus population in the rumen, based on a variable region in the cel48A gene. cel48A encodes a single copy of the CBM37-associated family 48 glycoside hydrolase in all known strains of this bacterium. A segment of the cel48A gene was amplified from rumen metagenomic samples of four bovines, and its abundance and diversity were evaluated. Analysis of the obtained sequences revealed the co-existence of multiple functional phylotypes of cel48A in all four animals. These included sequences identical or similar to those of R. albus isolates (reference strains), as well as several novel sequences. The dominant cel48A type varied among animals. This method can be used for detection of intraspecific diversity of R. albus in metagenomic samples. Together with scaC, a previously reported gene marker for R. flavefaciens, we present a set of two species-specific markers for phylotyping of Ruminococci in the herbivore rumen.


Asunto(s)
Celulasas/genética , Microbiota , Tipificación Molecular , Rumen/microbiología , Ruminococcus/clasificación , Ruminococcus/genética , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bovinos , Celulasas/química , Celulosa/metabolismo , Variación Genética , Datos de Secuencia Molecular , Filogenia , Ruminococcus/enzimología , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
14.
PLoS One ; 8(2): e56138, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23457513

RESUMEN

BACKGROUND: Ruminococcus flavefaciens is one of the predominant fiber-degrading bacteria found in the rumen of herbivores. Bioinformatic analysis of the recently sequenced genome indicated that this bacterium produces one of the most intricate cellulosome systems known to date. A distinct ORF, encoding for a multi-modular protein, RflaF_05439, was discovered during mining of the genome sequence. It is composed of two tandem modules of currently undefined function that share 45% identity and a C-terminal X-dockerin modular dyad. Gaining insight into the diversity, architecture and organization of different types of proteins in the cellulosome system is essential for broadening our understanding of a multi-enzyme complex, considered to be one of the most efficient systems for plant cell wall polysaccharide degradation in nature. METHODOLOGY/PRINCIPAL FINDINGS: Following bioinformatic analysis, the second tandem module of RflaF_05439 was cloned and its selenium-labeled derivative was expressed and crystallized. The crystals belong to space group P21 with unit-cell parameters of a = 65.81, b = 60.61, c = 66.13 Å, ß = 107.66° and contain two protein molecules in the asymmetric unit. The crystal structure was determined at 1.38-Å resolution by X-ray diffraction using the single-wavelength anomalous dispersion (SAD) method and was refined to Rfactor and Rfree of 0.127 and 0.152 respectively. The protein molecule mainly comprises a ß-sheet flanked by short α-helixes, and a globular α-helical domain. The structure was found to be structurally similar to members of the NlpC/P60 superfamily of cysteine peptidases. CONCLUSIONS/SIGNIFICANCE: The 3D structure of the second repeat of the RflaF_05439 enabled us to propose a role for the currently undefined function of this protein. Its putative function as a cysteine peptidase is inferred from in silico structural homology studies. It is therefore apparent that cellulosomes integrate proteins with other functions in addition to the classic well-defined carbohydrate active enzymes.


Asunto(s)
Proteínas Bacterianas/química , Celulosomas/química , Papaína/química , Ruminococcus/química , Ruminococcus/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia
15.
PLoS One ; 7(11): e50299, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209699

RESUMEN

Electroendocytosis involves the exposure of cells to pulsed low electric field and is emerging as a complementary method to electroporation for the incorporation of macromolecules into cells. The present study explores the underlying mechanism of electroendocytosis and its dependence on electrochemical byproducts formed at the electrode interface. Cell suspensions were exposed to pulsed low electric field in a partitioned device where cells are spatially restricted relative to the electrodes. The cellular uptake of dextran-FITC was analyzed by flow cytometery and visualized by confocal microscopy. We first show that uptake occurs only in cells adjacent to the anode. The enhanced uptake near the anode is found to depend on electric current density rather than on electric field strength, in the range of 5 to 65 V/cm. Electrochemically produced oxidative species that impose intracellular oxidative stress, do not play any role in the stimulated uptake. An inverse dependence is found between electrically induced uptake and the solution's buffer capacity. Electroendocytosis can be mimicked by chemically acidifying the extracellular solution which promotes the enhanced uptake of dextran polymers and the uptake of plasmid DNA. Electrochemical production of protons at the anode interface is responsible for inducing uptake of macromolecules into cells exposed to a pulsed low electric field. Expanding the understanding of the mechanism involved in electric fields induced drug-delivery into cells, is expected to contribute to clinical therapy applications in the future.


Asunto(s)
Electroquímica/métodos , Electroporación/métodos , Animales , Células COS , Línea Celular , Membrana Celular/metabolismo , Separación Celular , Chlorocebus aethiops , ADN/metabolismo , Sistemas de Liberación de Medicamentos , Electrodos , Endocitosis , Citometría de Flujo , Fluoresceína-5-Isotiocianato/farmacología , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Sustancias Macromoleculares , Microscopía Confocal/métodos , Estrés Oxidativo , Plásmidos/metabolismo , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA