Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Sci Rep ; 14(1): 8781, 2024 04 16.
Article En | MEDLINE | ID: mdl-38627497

SARS-CoV-2 provokes devastating tissue damage by cytokine release syndrome and leads to multi-organ failure. Modeling the process of immune cell activation and subsequent tissue damage is a significant task. Organoids from human tissues advanced our understanding of SARS-CoV-2 infection mechanisms though, they are missing crucial components: immune cells and endothelial cells. This study aims to generate organoids with these components. We established vascular immune organoids from human pluripotent stem cells and examined the effect of SARS-CoV-2 infection. We demonstrated that infections activated inflammatory macrophages. Notably, the upregulation of interferon signaling supports macrophages' role in cytokine release syndrome. We propose vascular immune organoids are a useful platform to model and discover factors that ameliorate SARS-CoV-2-mediated cytokine release syndrome.


COVID-19 , Humans , SARS-CoV-2/physiology , Endothelial Cells , Cytokine Release Syndrome , Macrophages , Organoids
2.
Dev Cell ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38582082

The commitment and differentiation of human placental progenitor cytotrophoblast (CT) cells are crucial for a successful pregnancy, but the underlying mechanism remains poorly understood. Here, we identified the transcription factor (TF), specificity protein 6 (SP6), as a human species-specific trophoblast lineage TF expressed in human placental CT cells. Using pluripotent stem cells as a model, we demonstrated that SP6 controls CT generation and the establishment of trophoblast stem cells (TSCs) and identified msh homeobox 2 (MSX2) as the downstream effector in these events. Mechanistically, we showed that SP6 interacts with histone acetyltransferase P300 to alter the landscape of H3K27ac at targeted regulatory elements, thereby favoring transcriptional activation and facilitating CT cell fate decisions and TSC maintenance. Our results established SP6 as a regulator of the human trophoblast lineage and implied its role in placental development and the pathogenies of placental diseases.

3.
Nat Protoc ; 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509352

Pigs share anatomical and physiological traits with humans and can serve as a large-animal model for translational medicine. Bona fide porcine pluripotent stem cells (PSCs) could facilitate testing cell and drug therapies. Agriculture and biotechnology may benefit from the ability to produce immune cells for studying animal infectious diseases and to readily edit the porcine genome in stem cells. Isolating porcine PSCs from preimplantation embryos has been intensively attempted over the past decades. We previously reported the derivation of expanded potential stem cells (EPSCs) from preimplantation embryos and by reprogramming somatic cells of multiple mammalian species, including pigs. Porcine EPSCs (pEPSCs) self-renew indefinitely, differentiate into embryonic and extra-embryonic lineages, and permit precision genome editing. Here we present a highly reproducible experimental procedure and data of an optimized and robust porcine EPSC culture system and its use in deriving new pEPSC lines from preimplantation embryos and reprogrammed somatic cells. No particular expertise is required for the protocols, which take ~4-6 weeks to complete. Importantly, we successfully established pEPSC lines from both in vitro fertilized and somatic cell nuclear transfer-derived embryos. These new pEPSC lines proliferated robustly over long-term passaging and were amenable to both simple indels and precision genome editing, with up to 100% targeting efficiency. The pEPSCs differentiated into embryonic cell lineages in vitro and teratomas in vivo, and into porcine trophoblast stem cells in human trophoblast stem cell medium. We show here that pEPSCs have unique epigenetic features, particularly H3K27me3 levels substantially lower than fibroblasts.

4.
Sci Adv ; 9(44): eadi4777, 2023 11 03.
Article En | MEDLINE | ID: mdl-37922358

Early-onset preeclampsia (EOPE) is a severe pregnancy complication associated with defective trophoblast differentiation and functions at implantation, but manifestation of its phenotypes is in late pregnancy. There is no reliable method for early prediction and treatment of EOPE. Adrenomedullin (ADM) is an abundant placental peptide in early pregnancy. Integrated single-cell sequencing and spatial transcriptomics confirm a high ADM expression in the human villous cytotrophoblast and syncytiotrophoblast. The levels of ADM in chorionic villi and serum were lower in first-trimester pregnant women who later developed EOPE than those with normotensive pregnancy. ADM stimulates differentiation of trophoblast stem cells and trophoblast organoids in vitro. In pregnant mice, placenta-specific ADM suppression led to EOPE-like phenotypes. The EOPE-like phenotypes in a mouse PE model were reduced by a placenta-specific nanoparticle-based forced expression of ADM. Our study reveals the roles of trophoblastic ADM in placental development, EOPE pathogenesis, and its potential clinical uses.


Pre-Eclampsia , Pregnancy , Female , Mice , Humans , Animals , Pre-Eclampsia/therapy , Pre-Eclampsia/metabolism , Trophoblasts/metabolism , Adrenomedullin/metabolism , Placenta/metabolism , Cell Differentiation
5.
STAR Protoc ; 4(2): 102354, 2023 Jun 09.
Article En | MEDLINE | ID: mdl-37300826

Human trophoblast development study has long been limited by the lack of suitable materials. Here we present a detailed protocol for the differentiation of human expanded potential stem cells (hEPSCs) into human trophoblast stem cells (TSCs) and for the subsequent establishment of TSC lines. The hEPSC-derived TSC lines can be continuously passaged and are functional in further differentiation into syncytiotrophoblasts and extravillous trophoblasts. The hEPSC-TSC system offers a valuable cell source for studying human trophoblast development in pregnancy. For complete details on the use and execution of this protocol, please refer to Gao et al. (2019)1 and Ruan et al. (2022).2.

6.
Cell Rep Med ; 3(12): 100849, 2022 12 20.
Article En | MEDLINE | ID: mdl-36495872

Direct in vivo investigation of human placenta trophoblast's susceptibility to SARS-CoV-2 is challenging. Here we report that human trophoblast stem cells (hTSCs) and their derivatives are susceptible to SARS-CoV-2 infection, which reveals heterogeneity in hTSC cultures. Early syncytiotrophoblasts (eSTBs) generated from hTSCs have enriched transcriptomic features of peri-implantation trophoblasts, express high levels of angiotensin-converting enzyme 2 (ACE2), and are productively infected by SARS-CoV-2 and its Delta and Omicron variants to produce virions. Antiviral drugs suppress SARS-CoV-2 replication in eSTBs and antagonize the virus-induced blockage of STB maturation. Although less susceptible to SARS-CoV-2 infection, trophoblast organoids originating from hTSCs show detectable viral replication reminiscent of the uncommon placental infection. These findings implicate possible risk of COVID-19 infection in peri-implantation embryos, which may go unnoticed. Stem cell-derived human trophoblasts such as eSTBs can potentially provide unlimited amounts of normal and genome-edited cells and facilitate coronavirus research and antiviral discovery.


COVID-19 , Pregnancy Complications, Infectious , Humans , Female , Pregnancy , SARS-CoV-2 , Trophoblasts , Placenta , Peptidyl-Dipeptidase A/genetics , Antiviral Agents/pharmacology
8.
Methods Mol Biol ; 2239: 199-211, 2021.
Article En | MEDLINE | ID: mdl-33226621

The development of porcine expanded potential stem cells (pEPSCs) provides an invaluable tool for investigation of porcine stem cell pluripotency and opens a venue for research in biotechnology, agriculture, and regenerative medicine. Since the derivation of pEPSC from porcine pre-implantation embryos has been demanding in resource supply and technical challenges, it is more feasible and convenient for most laboratories to derive this new type of porcine stem cells by reprogramming somatic cells. In this chapter, we describe the detailed procedures for reprogramming porcine fetal fibroblast cells to EPSCiPSC with the eight reprogramming factors cloned on the piggyBac vectors followed by a selection for pluripotent cells independent of transgene expression using the EPSC media. This technique allows the generation of pEPSCs for stem cell research, genome editing, biotechnology, and agriculture.


Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Animals , Cryopreservation/methods , Feeder Cells/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mitomycin/pharmacology , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Real-Time Polymerase Chain Reaction , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Swine , Transcription Factors/genetics , Transfection
9.
Nat Cell Biol ; 21(6): 687-699, 2019 06.
Article En | MEDLINE | ID: mdl-31160711

We recently derived mouse expanded potential stem cells (EPSCs) from individual blastomeres by inhibiting the critical molecular pathways that predispose their differentiation. EPSCs had enriched molecular signatures of blastomeres and possessed developmental potency for all embryonic and extra-embryonic cell lineages. Here, we report the derivation of porcine EPSCs, which express key pluripotency genes, are genetically stable, permit genome editing, differentiate to derivatives of the three germ layers in chimeras and produce primordial germ cell-like cells in vitro. Under similar conditions, human embryonic stem cells and induced pluripotent stem cells can be converted, or somatic cells directly reprogrammed, to EPSCs that display the molecular and functional attributes reminiscent of porcine EPSCs. Importantly, trophoblast stem-cell-like cells can be generated from both human and porcine EPSCs. Our pathway-inhibition paradigm thus opens an avenue for generating mammalian pluripotent stem cells, and EPSCs present a unique cellular platform for translational research in biotechnology and regenerative medicine.


Cell Differentiation/genetics , Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/cytology , Animals , Blastomeres/cytology , Blastomeres/metabolism , Cell Lineage/genetics , Embryonic Stem Cells/cytology , Germ Layers/growth & development , Germ Layers/metabolism , Humans , Mice , Regenerative Medicine , Signal Transduction/genetics , Swine , Trophoblasts/cytology , Trophoblasts/metabolism
10.
Cell Mol Life Sci ; 75(19): 3593-3607, 2018 Oct.
Article En | MEDLINE | ID: mdl-29637228

CRISPR/Cpf1 features a number of properties that are distinct from CRISPR/Cas9 and provides an excellent alternative to Cas9 for genome editing. To date, genome engineering by CRISPR/Cpf1 has been reported only in human cells and mouse embryos of mammalian systems and its efficiency is ultimately lower than that of Cas9 proteins from Streptococcus pyogenes. The application of CRISPR/Cpf1 for targeted mutagenesis in other animal models has not been successfully verified. In this study, we designed and optimized a guide RNA (gRNA) transcription system by inserting a transfer RNA precursor (pre-tRNA) sequence downstream of the gRNA for Cpf1, protecting gRNA from immediate digestion by 3'-to-5' exonucleases. Using this new gRNAtRNA system, genome editing, including indels, large fragment deletion and precise point mutation, was induced in mammalian systems, showing significantly higher efficiency than the original Cpf1-gRNA system. With this system, gene-modified rabbits and pigs were generated by embryo injection or somatic cell nuclear transfer (SCNT) with an efficiency comparable to that of the Cas9 gRNA system. These results demonstrated that this refined gRNAtRNA system can boost the targeting capability of CRISPR/Cpf1 toolkits.


Bacterial Proteins/genetics , CRISPR-Cas Systems/genetics , Cloning, Molecular/methods , Cloning, Organism/methods , Endonucleases/genetics , Gene Editing/methods , RNA, Transfer/genetics , Animals , Animals, Genetically Modified , Animals, Newborn , Bacterial Proteins/metabolism , Cells, Cultured , Embryo, Mammalian , Endonucleases/metabolism , Female , Fetus , Genome/genetics , HEK293 Cells , HeLa Cells , Humans , Male , Mammals/embryology , Mammals/genetics , Mutagenesis , Nuclear Transfer Techniques , Pregnancy , RNA, Guide, Kinetoplastida/genetics , Rabbits , Swine , Swine, Miniature
11.
Stem Cell Reports ; 10(2): 494-508, 2018 02 13.
Article En | MEDLINE | ID: mdl-29337117

Pig cloning by somatic cell nuclear transfer (SCNT) remains extremely inefficient, and many cloned embryos undergo abnormal development. Here, by profiling transcriptome expression, we observed dysregulated chromosome-wide gene expression in every chromosome and identified a considerable number of genes that are aberrantly expressed in the abnormal cloned embryos. In particular, XIST, a long non-coding RNA gene, showed high ectopic expression in abnormal embryos. We also proved that nullification of the XIST gene in donor cells can normalize aberrant gene expression in cloned embryos and enhance long-term development capacity of the embryos. Furthermore, the increased quality of XIST-deficient embryos was associated with the global H3K9me3 reduction. Injection of H3K9me demethylase Kdm4A into NT embryos could improve the development of pre-implantation stage embryos. However, Kdm4A addition also induced XIST derepression in the active X chromosome and thus was not able to enhance the in vivo long-term developmental capacity of porcine NT embryos.


Cloning, Organism/methods , Jumonji Domain-Containing Histone Demethylases/genetics , RNA, Long Noncoding/genetics , X Chromosome/genetics , Animals , Blastocyst/metabolism , Cellular Reprogramming/genetics , Embryo, Mammalian , Embryonic Development/genetics , Female , Gene Expression Regulation, Developmental , Jumonji Domain-Containing Histone Demethylases/administration & dosage , Nuclear Transfer Techniques , Swine/genetics
12.
Genome Res ; 27(12): 2061-2071, 2017 12.
Article En | MEDLINE | ID: mdl-29146772

Despite being time-consuming and costly, generating genome-edited pigs holds great promise for agricultural, biomedical, and pharmaceutical applications. To further facilitate genome editing in pigs, we report here establishment of a pig line with Cre-inducible Cas9 expression that allows a variety of ex vivo genome editing in fibroblast cells including single- and multigene modifications, chromosome rearrangements, and efficient in vivo genetic modifications. As a proof of principle, we were able to simultaneously inactivate five tumor suppressor genes (TP53, PTEN, APC, BRCA1, and BRCA2) and activate one oncogene (KRAS), achieved by delivering Cre recombinase and sgRNAs, which caused rapid lung tumor development. The efficient genome editing shown here demonstrates that these pigs can serve as a powerful tool for dissecting in vivo gene functions and biological processes in a temporal manner and for streamlining the production of genome-edited pigs for disease modeling.


Animals, Genetically Modified , Bacterial Proteins/genetics , Endonucleases/genetics , Gene Editing/methods , Genome , Swine, Miniature/genetics , Animals , CRISPR-Associated Protein 9 , CRISPR-Cas Systems/genetics , Female , Fibroblasts/metabolism , Gene Rearrangement , Genes, Tumor Suppressor , Humans , Integrases/metabolism , Lung Neoplasms/genetics , Male , Oncogenes , Swine , Transcription Activator-Like Effector Nucleases , Transcriptional Activation
...