Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Discov Oncol ; 15(1): 317, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073546

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a prevalent malignancy with high morbidity and mortality rates. Previous studies have demonstrated that interleukin (IL)-22 is involved in CRC progression; however, the exact mechanism remains unclear. This study aimed to investigate the effects of IL-22 on CRC cell proliferation and metastasis. METHODS: IL-22 levels in the serum and tissues of CRC patients were measured using enzyme-linked immunosorbent assay (ELISA). Cell counting kit-8 (CCK-8) assay was used to detect the viability of CRC (HCT116) cells treated with different IL-22 concentrations. Colony formation, Transwell invasion, and scratch assays were employed to assess the effects of IL-22 on cell proliferation, invasion, and migration. Western blotting was performed to measure the expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), p-PI3K, p-AKT, E-cadherin, matrix metalloproteinase (MMP)-2, MMP-9, SNAI1, and TWIST1 in HCT116 cells treated with IL-22 or a PI3K inhibitor. RESULTS: ELISA results showed that the expression of IL-22 was significantly increased in the serum and tissues of CRC patients compared to controls. IL-22 treatment increased cell viability and colony formation in a concentration-dependent manner and enhanced cell invasion and migration. Western blotting analysis revealed that IL-22 stimulation upregulated p-PI3K and p-AKT expression, while total PI3K and AKT levels remained unchanged. Additionally, IL-22 also decreased E-cadherin expression and increased the expression of MMP-2, MMP-9, SNAI1, and TWIST1. CONCLUSIONS: IL-22 activates the PI3K-AKT pathway and promotes HCT116 cell proliferation and metastasis. Targeting the regulation of the PI3K/AKT pathway may be a potential therapeutic strategy for CRC.

2.
3 Biotech ; 13(10): 327, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37663749

RESUMEN

Bevacizumab is the standard treatment for colorectal cancer (CRC) in the advanced stage. However, poor diagnosis identified due to the bevacizumab resistance in many CRC patients. Previous studies have found that CRC stem cells (CCSCs) and interleukin 22 (IL-22) are involved in the resistance of bevacizumab, however, the mechanism of remains unclear. In this study, we established the bevacizumab drug-resistant cell line HCT-116-R by concentration gradient method, and the cell viability was detected by CCK-8 assay. The resistance of bevacizumab in CRC cell lines HCT-116-R was identified by characterizing epithelial-mesenchymal transition (EMT). Additionally, HCT-116-R cell lines were isolated from CCSCs and their tumorigenicity was validated in nude mice. We observed that that compared with the matched group, the expression of IL-22, IL-22R, STAT3, and GP130 in drug-resistant cells increased distinctly, with blocked IL-22 cells were successfully constructed by lentiviral interference. The level of proteins in stem cell landmarks (EpCAM, CD133), and stem cell landmarks (Oct4, Sox2) was identified by western blotting. Furthermore, the IL-22 role was evaluated by xenograft model. We found that short hairpin RNA (shRNA) suppression of IL-22 expression can restore the sensitivity of drug-resistant CCSCs to bevacizumab, Moreover, xenograft tumor models show that suppression of IL-22 can increase the anti-tumor influence of bevacizumab. In summary, we demonstrated that CCSCs play a major part in bevacizumab-resistant CRC. Inhibiting the signaling pathway of IL-22/STAT3 can improve the anti-tumor influence on bevacizumab in vitro and in vivo. Thus, IL-22 may represent a new anti-bevacizumab target in CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA