Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Nat Commun ; 15(1): 3304, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632242

Defect scattering is well known to suppress thermal transport. In this study, however, we perform both molecular dynamics and Boltzmann transport equation calculations, to demonstrate that introducing defect scattering in nanoscale heating zone could surprisingly enhance thermal conductance of the system by up to 75%. We further reveal that the heating zone without defects yields directional nonequilibrium with overpopulated oblique-propagating phonons which suppress thermal transport, while introducing defects redirect phonons randomly to restore directional equilibrium, thereby enhancing thermal conductance. We demonstrate that defect scattering can enable such thermal transport enhancement in a wide range of temperatures, materials, and sizes, and offer an unconventional strategy for enhancing thermal transport via the manipulation of phonon directional nonequilibrium.

2.
Small ; : e2303706, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38353067

Smart windows that can passively regulate incident solar radiation by dynamically modulating optical transmittance have attracted increasing scientific interest due to their potential economic and environmental savings. However, challenges remain in the global adoption of such systems, given the extreme variability in climatic and economic conditions across different geographical locations. Aiming these issues, a methylcellulose (MC) salt system is synthesized with high tunability for intrinsic optical transmittance (89.3%), which can be applied globally to various locations. Specifically, the MC window exhibits superior heat shielding potential below transition temperatures, becoming opaque at temperatures above the Lower Critical Solution Temperature and reducing the solar heat gain by 55%. This optical tunability is attributable to the particle size change triggered by the temperature-induced reversible coil-to-globular transition. This leads to effective refractive index and scattering modulation, making them prospective solutions for light management systems, an application ahead of intelligent fenestration systems. During the field tests, MC-based windows demonstrated a 9 °C temperature decrease compared to double-pane windows on sunny days and a 5 °C increase during winters, with simulations predicting an 11% energy savings. The ubiquitous availability of materials, low cost, and ease-of-manufacturing will provide technological equity and foster the ambition toward net-zero buildings.

3.
Nano Lett ; 23(21): 10044-10050, 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37889143

We show that engineering phonon scattering, such as through isotope enrichment and temperature modulation, offers the potential to achieve unconventional radiative heat transfer between two boron arsenide bulks at the nanoscale, which holds promise in applications for nonlinear thermal circuit components. A heat flux regulator is proposed, where the temperature window for stabilized heat flux exhibits a wide tunability through phonon scattering engineering. Additionally, we propose several other nonlinear thermal radiative devices, including a negative differential thermal conductance device, a temperature regulator, and a thermal diode, all benefiting from the design space enabled by isotope and temperature engineering of the phonon linewidth. Our work highlights the capability of temperature and isotope engineering in designing and optimizing nonlinear radiative thermal devices and demonstrates the potential of phonon engineering in thermal radiative transport.

4.
ACS Appl Mater Interfaces ; 14(43): 48960-48966, 2022 Nov 02.
Article En | MEDLINE | ID: mdl-36256868

Although a variety of methods to predict the effective thermal conductivity of porous foams have been proposed, the response of such materials under dynamic compressive loading has generally not been considered. Understanding the dynamic thermal behavior will widen the potential applications of porous foams and provide insights into methods of modifying material properties to achieve desired performance. Previous experimental work on the thermal conductivity of a flexible graphene composite under compression showed intriguing behavior: the cross-plane thermal conductivity remained approximately constant with increasing compression, despite the increasing mass density. In this work, we use molecular dynamics (MD) simulations and finite element analysis to study the variation in both the cross-plane and in-plane thermal conductivities by compressing isotropic graphene foams. We have found that, interestingly, the cross-plane thermal conductivity decreases with compression while the in-plane thermal conductivity increases; hence, the dynamic thermal transport of the graphene foam becomes anisotropic with a significant anisotropy ratio. Such observations cannot be explained by the conventional effective medium theory, which describes the increase of thermal conductivity to be proportional to mass density. Thus, we propose a model that can describe such anisotropic effective thermal conductivity of highly porous open-cell media during compression. The model is validated against the MD simulations as well as a larger-scale finite element simulation of an open-cell foam geometry.

5.
Nano Lett ; 22(7): 2618-2626, 2022 04 13.
Article En | MEDLINE | ID: mdl-35364813

Atmospheric water harvesting (AWH) has received tremendous interest because of population growth, limited freshwater resources, and water pollution. However, key challenges remain in developing efficient, flexible, and lightweight AWH materials with scalability. Here, we demonstrated a radiative cooling fabric for AWH via its hierarchically structured cellulose network and hybrid sorption-dewing mechanisms. With 8.3% solar absorption and ∼0.9 infrared (IR) emissivity, the material can drop up to 7.5 °C below ambient temperature without energy consumption via radiative cooling. Water adsorption onto the hydrophilic functional groups of cellulose is dominated by sorption at low relative humidity (RH) and dewing at high RH. The cellulose network provides desirable mechanical properties with entangled high-aspect-ratio fibers over tens of adsorption-extraction cycles. In the field test, the cellulose sample exhibited water uptake of 1.29 kg/kg at 80% RH during the night. The profusion of radiative cooling fabric features desirable cost effectiveness and allows fast deployment into large-scale AWH applications.


Cellulose , Water , Cold Temperature , Phase Transition , Textiles
6.
Phys Rev Lett ; 128(4): 045901, 2022 Jan 28.
Article En | MEDLINE | ID: mdl-35148139

The Raman peak position and linewidth provide insight into phonon anharmonicity and electron-phonon interactions in materials. For monolayer graphene, prior first-principles calculations have yielded decreasing linewidth with increasing temperature, which is opposite to measurement results. Here, we explicitly consider four-phonon anharmonicity, phonon renormalization, and electron-phonon coupling, and find all to be important to successfully explain both the G peak frequency shift and linewidths in our suspended graphene sample over a wide temperature range. Four-phonon scattering contributes a prominent linewidth that increases with temperature, while temperature dependence from electron-phonon interactions is found to be reversed above a doping threshold (ℏω_{G}/2, with ω_{G} being the frequency of the G phonon).

7.
Nat Commun ; 12(1): 4915, 2021 Aug 13.
Article En | MEDLINE | ID: mdl-34389704

Thermal switches have gained intense interest recently for enabling dynamic thermal management of electronic devices and batteries that need to function at dramatically varied ambient or operating conditions. However, current approaches have limitations such as the lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here, a continuously tunable, wide-range, and fast thermal switching approach is proposed and demonstrated using compressible graphene composite foams. Large (~8x) continuous tuning of the thermal resistance is achieved from the uncompressed to the fully compressed state. Environmental chamber experiments show that our variable thermal resistor can precisely stabilize the operating temperature of a heat generating device while the ambient temperature varies continuously by ~10 °C or the heat generation rate varies by a factor of 2.7. This thermal device is promising for dynamic control of operating temperatures in battery thermal management, space conditioning, vehicle thermal comfort, and thermal energy storage.

8.
Phys Rev Lett ; 126(11): 115901, 2021 Mar 19.
Article En | MEDLINE | ID: mdl-33798386

Extracting long-lasting performance from electronic devices and improving their reliability through effective heat management requires good thermal conductors. Taking both three- and four-phonon scattering as well as electron-phonon and isotope scattering into account, we predict that semimetallic θ-phase tantalum nitride (θ-TaN) has an ultrahigh thermal conductivity (κ), of 995 and 820 W m^{-1} K^{-1} at room temperature along the a and c axes, respectively. Phonons are found to be the main heat carriers, and the high κ hinges on a particular combination of factors: weak electron-phonon scattering, low isotopic mass disorder, and a large frequency gap between acoustic and optical phonon modes that, together with acoustic bunching, impedes three-phonon processes. On the other hand, four-phonon scattering is found to be significant. This study provides new insight into heat conduction in semimetallic solids and extends the search for high-κ materials into the realms of semimetals and noncubic crystal structures.

9.
ACS Appl Mater Interfaces ; 13(18): 21733-21739, 2021 May 12.
Article En | MEDLINE | ID: mdl-33856776

Radiative cooling is a passive cooling technology that offers great promises to reduce space cooling cost, combat the urban island effect, and alleviate the global warming. To achieve passive daytime radiative cooling, current state-of-the-art solutions often utilize complicated multilayer structures or a reflective metal layer, limiting their applications in many fields. Attempts have been made to achieve passive daytime radiative cooling with single-layer paints, but they often require a thick coating or show partial daytime cooling. In this work, we experimentally demonstrate remarkable full-daytime subambient cooling performance with both BaSO4 nanoparticle films and BaSO4 nanocomposite paints. BaSO4 has a high electron band gap for low solar absorptance and phonon resonance at 9 µm for high sky window emissivity. With an appropriate particle size and a broad particle size distribution, the BaSO4 nanoparticle film reaches an ultrahigh solar reflectance of 97.6% and a high sky window emissivity of 0.96. During field tests, the BaSO4 film stays more than 4.5 °C below ambient temperature or achieves an average cooling power of 117 W/m2. The BaSO4-acrylic paint is developed with a 60% volume concentration to enhance the reliability in outdoor applications, achieving a solar reflectance of 98.1% and a sky window emissivity of 0.95. Field tests indicate similar cooling performance to the BaSO4 films. Overall, our BaSO4-acrylic paint shows a standard figure of merit of 0.77, which is among the highest of radiative cooling solutions while providing great reliability, convenient paint form, ease of use, and compatibility with the commercial paint fabrication process.

10.
ACS Appl Mater Interfaces ; 13(3): 4636-4642, 2021 Jan 27.
Article En | MEDLINE | ID: mdl-33433205

Bismuth telluride (Bi2Te3) and its alloys with antimony telluride (Sb2Te3) have long been considered to be the best room-temperature bulk thermoelectric (TE) materials. In recent decades, proof-of-concept demonstrations on Bi2Te3-Sb2Te3 nanostructures have shown high TE performance due to reduction in lattice thermal conductivities. Particularly, ultra-low thermal conductivities have been observed in Bi2Te3-Sb2Te3 1D superlattices, leading to thermoelectric figures of merit (ZT) as high as 2.4. In contrast, very few computational studies have been performed to provide insight into the phonon transport across these nanostructures. In this work, we use non-equilibrium molecular dynamics simulations with previously developed force fields to simulate thermal transport across Bi2Te3-Sb2Te3 interfaces and superlattices. We first calculate the thermal conductance associated with a Bi2Te3-Sb2Te3 interface across a temperature range of 200-400 K. The values are also compared with thermal conductances calculated by a modified Landauer transport formalism using phonon transmission coefficients obtained from the diffuse mismatch model. Our results show that inelastic scattering processes contribute to an increase in interfacial thermal conductance at higher temperatures. Finally, we calculate the thermal conductivities of Bi2Te3-Sb2Te3 superlattices with varying period lengths from 2 to 18 nm. A minimum thermal conductivity of 0.27 W/mK is observed at a period length of 4 nm, which is attributed to the competition between incoherent and coherent phonon transport regimes. In comparison with previous experimental measurements in the literature, our results show good agreement with respect to the range of thermal conductivity values and the period length corresponding to the minimum superlattice thermal conductivity.

11.
Nat Commun ; 11(1): 2554, 2020 May 22.
Article En | MEDLINE | ID: mdl-32444680

Many low-thermal-conductivity (κL) crystals show intriguing temperature (T) dependence of κL: κL ∝ T-1 (crystal-like) at intermediate temperatures whereas weak T-dependence (glass-like) at high temperatures. It has been in debate whether thermal transport can still be described by phonons at the Ioffe-Regel limit. In this work, we propose that most phonons are still well defined for thermal transport, whereas they carry heat via dual channels: normal phonons described by the Boltzmann transport equation theory, and diffuson-like phonons described by the diffusion theory. Three physics-based criteria are incorporated into first-principles calculations to judge mode-by-mode between the two phonon channels. Case studies on La2Zr2O7 and Tl3VSe4 show that normal phonons dominate low temperatures while diffuson-like phonons dominate high temperatures. Our present dual-phonon theory enlightens the physics of hierarchical phonon transport as approaching the Ioffe-Regel limit and provides a numerical method that should be practically applicable to many materials with vibrational hierarchy.

12.
ACS Nano ; 13(8): 9182-9189, 2019 Aug 27.
Article En | MEDLINE | ID: mdl-31411858

Conventionally, graphene is a poor thermoelectric material with a low figure of merit (ZT) of 10-4-10-3. Although nanostructuring was proposed to improve the thermoelectric performance of graphene, little experimental progress has been accomplished. Here, we carefully fabricated as-grown suspended graphene nanoribbons with quarter-micron length and ∼40 nm width. The ratio of electrical to thermal conductivity was enhanced by 1-2 orders of magnitude, and the Seebeck coefficient was several times larger than bulk graphene, which yielded record-high ZT values up to ∼0.1. Moreover, we observed a record-high electronic contribution of ∼20% to the total thermal conductivity in the nanoribbon. Concurrent phonon Boltzmann transport simulations reveal that the reduction of lattice thermal conductivity is mainly attributed to quasi-ballistic phonon transport. The record-high ratio of electrical to thermal conductivity was enabled by the disparate electron and phonon mean free paths as well as the clean samples, and the enhanced Seebeck coefficient was attributed to the band gap opening. Our work not only demonstrates that electron and phonon transport can be fundamentally tuned and decoupled in graphene but also indicates that graphene with appropriate nanostructures can be very promising thermoelectric materials.

13.
ACS Appl Mater Interfaces ; 10(17): 15226-15231, 2018 May 02.
Article En | MEDLINE | ID: mdl-29613768

Three different mechanisms are identified to contribute to thermal resistances across a carbon nanotube-graphene junction: material mismatch, nonplanar junction, and defects. To isolate the contributions of each mechanism, we have designed five types of junctions and performed nonequilibrium molecular dynamics simulations. The results show that the contributions from the three mechanisms are similar, each at around 2.5 × 10-11 m2 K/W. The relations between thermal boundary resistance and both defect number and turning angle at the interface are also studied.

14.
Angew Chem Int Ed Engl ; 57(9): 2413-2418, 2018 02 23.
Article En | MEDLINE | ID: mdl-29356282

Reconstructing canonical binary compounds by inserting a third agent can significantly modify their electronic and phonon structures. Therefore, it has inspired the semiconductor communities in various fields. Introducing this paradigm will potentially revolutionize thermoelectrics as well. Using a solution synthesis, Bi2 S3 was rebuilt by adding disordered Bi and weakly bonded I. These new structural motifs and the altered crystal symmetry induce prominent changes in electrical and thermal transport, resulting in a great enhancement of the figure of merit. The as-obtained nanostructured Bi13 S18 I2 is the first non-toxic, cost-efficient, and solution-processable n-type material with z T=1.0.

15.
Nano Lett ; 17(3): 2049-2056, 2017 03 08.
Article En | MEDLINE | ID: mdl-28218545

The measured frequencies and intensities of different first- and second-order Raman peaks of suspended graphene are used to show that optical phonons and different acoustic phonon polarizations are driven out of local equilibrium inside a submicron laser spot. The experimental results are correlated with a first-principles-based multiple temperature model to suggest a considerably lower equivalent local temperature of the flexural phonons than those of other phonon polarizations. The finding reveals weak coupling between the flexural modes with hot electrons and optical phonons. Since the ultrahigh intrinsic thermal conductivity of graphene has been largely attributed to contributions from the flexural phonons, the observed local nonequilibrium phenomena have important implications for understanding energy dissipation processes in graphene-based electronic and optoelectronic devices, as well as in Raman measurements of thermal transport in graphene and other two-dimensional materials.

16.
Adv Mater ; 29(10)2017 Mar.
Article En | MEDLINE | ID: mdl-28084654

A scalable, low-temperature solution process is used to synthesize precursor material for Pb-doped Bi0.7 Sb1.3 Te3 thermoelectric nanocomposites. The controllable Pb-doping leads to the increase in the optical bandgap, thus delaying the onset of bipolar conduction. Furthermore, the solution synthesis enables nanostructuring, which greatly reduces thermal conductivity. As a result, this material exhibits a zT = 1 over the 513-613 K range.

17.
Angew Chem Int Ed Engl ; 56(13): 3546-3551, 2017 03 20.
Article En | MEDLINE | ID: mdl-28079961

To enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ) and excellent figure of merit (z T). Herein we report a scalable (ca. 11.0 g per batch) and low-temperature colloidal processing route for Bi2 Te2.5 Se0.5 hollow nanostructures. They are sintered into porous, bulk nanocomposites (phi 10 mm×h 10 mm) with low κ (0.48 W m-1 K-1 ) and the highest z T (1.18) among state-of-the-art Bi2 Te3-x Sex materilas. Additional benefits of the unprecedented low relative density (68-77 %) are the large demand reduction of raw materials and the improved portability. This method can be adopted to fabricate other porous phase-transition and thermoelectric chalcogenide materials and will pave the way for the implementation of hollow nanostructures in other fields.

18.
Sci Rep ; 5: 16052, 2015 Nov 03.
Article En | MEDLINE | ID: mdl-26527570

We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~10(5) Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films.

19.
Phys Chem Chem Phys ; 16(22): 10669-78, 2014 Jun 14.
Article En | MEDLINE | ID: mdl-24756576

Enhancing the charge transfer process in nanocrystal sensitized solar cells is vital for the improvement of their performance. In this work we show a means of increasing photo-induced ultrafast charge transfer in successive ionic layer adsorption and reaction (SILAR) CdS-TiO2 nanocrystal heterojunctions using pulsed laser sintering of TiO2 nanocrystals. The enhanced charge transfer was attributed to both morphological and phase transformations. At sufficiently high laser fluences, volumetrically larger porous networks of the metal oxide were obtained, thus increasing the density of electron accepting states. Laser sintering also resulted in varying degrees of anatase to rutile phase transformation of the TiO2, producing thermodynamically more favorable conditions for charge transfer by increasing the change in free energy between the CdS donor and TiO2 acceptor states. Finally, we report aspects of apparent hot electron transfer as a result of the SILAR process which allows CdS to be directly adsorbed to the TiO2 surface.

20.
Nano Lett ; 14(2): 592-6, 2014 Feb 12.
Article En | MEDLINE | ID: mdl-24393070

We show that thermal rectification (TR) in asymmetric graphene nanoribbons (GNRs) is originated from phonon confinement in the lateral dimension, which is a fundamentally new mechanism different from that in macroscopic heterojunctions. Our molecular dynamics simulations reveal that, though TR is significant in nanosized asymmetric GNRs, it diminishes at larger width. By solving the heat diffusion equation, we prove that TR is indeed absent in both the total heat transfer rate and local heat flux for bulk-size asymmetric single materials, regardless of the device geometry or the anisotropy of the thermal conductivity. For a deeper understanding of why lateral confinement is needed, we have performed phonon spectra analysis and shown that phonon lateral confinement can enable three possible mechanisms for TR: phonon spectra overlap, inseparable dependence of thermal conductivity on temperature and space, and phonon edge localization, which are essentially related to each other in a complicated manner. Under such guidance, we demonstrate that other asymmetric nanostructures, such as asymmetric nanowires, thin films, and quantum dots, of a single material are potentially high-performance thermal rectifiers.

...