Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2310916120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38117856

RESUMEN

The kinetics and pathway of most catalyzed reactions depend on the existence of interface, which makes the precise construction of highly active single-atom sites at the reaction interface a desirable goal. Herein, we propose a thermal printing strategy that not only arranges metal atoms at the silica and carbon layer interface but also stabilizes them by strong coordination. Just like the typesetting of Chinese characters on paper, this method relies on the controlled migration of movable nanoparticles between two contact substrates and the simultaneous emission of atoms from the nanoparticle surface at high temperatures. Observed by in situ transmission electron microscopy, a single Fe3O4 nanoparticle migrates from the core of a SiO2 sphere to the surface like a droplet at high temperatures, moves along the interface of SiO2 and the coated carbon layer, and releases metal atoms until it disappears completely. These detached atoms are then in situ trapped by nitrogen and sulfur defects in the carbon layer to generate Fe single-atom sites, exhibiting excellent activity for oxygen reduction reaction. Also, sites' densities can be regulated by controlling the size of Fe3O4 nanoparticle between the two surfaces. More importantly, this strategy is applicable to synthesize Mn, Co, Pt, Pd, Au single-atom sites, which provide a general route to arrange single-atom sites at the interface of different supports for various applications.

2.
Nat Commun ; 14(1): 6936, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907596

RESUMEN

A standing puzzle in electrochemistry is that why the metal-nitrogen-carbon catalysts generally exhibit dramatic activity drop for oxygen reduction when traversing from alkaline to acid. Here, taking FeCo-N6-C double-atom catalyst as a model system and combining the ab initio molecular dynamics simulation and in situ surface-enhanced infrared absorption spectroscopy, we show that it is the significantly distinct interfacial double-layer structures, rather than the energetics of multiple reaction steps, that cause the pH-dependent oxygen reduction activity on metal-nitrogen-carbon catalysts. Specifically, the greatly disparate charge densities on electrode surfaces render different orientations of interfacial water under alkaline and acid oxygen reduction conditions, thereby affecting the formation of hydrogen bonds between the surface oxygenated intermediates and the interfacial water molecules, eventually controlling the kinetics of the proton-coupled electron transfer steps. The present findings may open new and feasible avenues for the design of advanced metal-nitrogen-carbon catalysts for proton exchange membrane fuel cells.

3.
Small ; 19(45): e2302328, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37431211

RESUMEN

The design of an efficient catalytic system with low Pt loading and excellent stability for the acidic oxygen reduction reaction is still a challenge for the extensive application of proton-exchange membrane fuel cells. Here, a gas-phase ordered alloying strategy is proposed to construct an effective synergistic catalytic system that blends PtM intermetallic compounds (PtM IMC, M = Fe, Cu, and Ni) and dense isolated transition metal sites (M-N4 ) on nitrogen-doped carbon (NC). This strategy enables Pt nanoparticles and defects on the NC support to timely trap flowing metal salt without partial aggregation, which is attributed to the good diffusivity of gaseous transition metal salts with low boiling points. In particular, the resulting Pt1 Fe1 IMC cooperating with Fe-N4 sites achieves cooperative oxygen reduction with a half-wave potential up to 0.94 V and leads to a high mass activity of 0.51 A  mgPt -1 and only 23.5% decay after 30 k cycles, both of which exceed DOE 2025 targets. This strategy provides a method for reducing Pt loading in fuel cells by integrating Pt-based intermetallics and single transition metal sites to produce an efficient synergistic catalytic system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...