Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Molecules ; 29(5)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38474476

Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.


Depressive Disorder, Major , Humans , Depressive Disorder, Major/drug therapy , Serotonin , Molecular Structure , Cryoelectron Microscopy , Antidepressive Agents/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
2.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 219-225, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38372092

Inhibiting mesangial cell proliferation is one of the strategies to control the early progression of diabetic nephropathy (DN). GSK3ß is closely related to cell apoptosis as well as the development of DN, but whether it acts on the proliferation of mesangial cells is unclear. This study aimed to elucidate the role and mechanism of GSK3ß-mediated lncRNA in high glucose-induced mesangial cell proliferation. HBZY-1 cells were used to establish the cell model of DN. The automatic cell counter was applied to assess cell proliferation. Flow cytometry was used to detect cell apoptosis and intracellular ROS levels. High-throughput transcriptomics sequencing was performed to detect the different expressions of long noncoding RNAs (lncRNAs) in the cell model of DN after knocking down the expression of GSK3ß by the transfection of siRNA. The expression of RNA was detected by real-time PCR. In the cell model of DN using HBZY-1 cells, cell proliferation was enhanced accompanied by GSK3ß activation and elevated apoptosis rate and reactive oxygen species (ROS) levels. A panel of novel lncRNAs, which were differentially expressed after GSK3ß knockdown in the cell model of DN, were identified by high-throughput transcriptomics sequencing. Among them, the expression of TCONS_00071187 was upregulated under high glucose conditions while the knockdown of the GSK3ß expression led to the downregulation of TCONS_00071187. The knockdown of TCONS_00071187 resulted in reduced mesangial cell proliferation, and decreased apoptosis rates and ROS levels. In conclusion, GSK3ß promoted mesangial cell proliferation by upregulating TCONS_00071187, which led to enhanced ROS production under high glucose conditions in the cell model of DN. This study revealed the role of GSK3ß medicated lncRNAs in the development of DN.


Diabetes Mellitus , Diabetic Nephropathies , Glycogen Synthase Kinase 3 beta , RNA, Long Noncoding , Cell Proliferation/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Glucose/toxicity , Glycogen Synthase Kinase 3 beta/genetics , Reactive Oxygen Species , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Rats
3.
Front Chem ; 11: 1280999, 2023.
Article En | MEDLINE | ID: mdl-37927560

Introduction: The rising incidence of type 2 diabetes has seriously affected international public health. The search for more drugs that can effectively treat diabetes has become a cutting-edge trend in research. Coenzyme Q10 (CoQ10) has attracted much attention in the last decade due to its wide range of biological activities. Many researchers have explored the clinical effects of CoQ10 in patients with type 2 diabetes. However, CoQ10 has low bio-availability due to its high lipophilicity. Therefore, we have structurally optimized CoQ10 in an attempt to exploit the potential of its pharmacological activity. Methods: A novel coenzyme Q10 derivative (L-50) was designed and synthesized by introducing a group containing bromine atom and hydroxyl at the terminal of coenzyme Q10 (CoQ10), and the antidiabetic effect of L-50 was investigated by cellular assays and animal experiments. Results: Cytotoxicity results showed that L-50 was comparatively low toxicity to HepG2 cells. Hypoglycemic assays indicated that L-50 could increase glucose uptake in IR-HepG2 cells, with significantly enhanced hypoglycemic capacity compared to the CoQ10. In addition, L-50 improved cellular utilization of glucose through reduction of reactive oxygen species (ROS) accumulated in insulin-resistant HepG2 cells (IR-HepG2) and regulation of JNK/AKT/GSK3ß signaling pathway, resulting in hypoglycemic effects. Furthermore, the animal experiments demonstrated that L-50 could restore the body weight of HFD/STZ mice. Notably, the findings suggested that L-50 could improve glycemic and lipid metabolism in HFD/STZ mice. Moreover, L-50 could increase fasting insulin levels (FINS) in HFD/STZ mice, leading to a decrease in fasting blood glucose (FBG) and hepatic glycogen. Furthermore, L-50 could recover triglycerides (TG), total cholesterol (T-CHO), lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) levels in HFD/STZ mice. Discussion: The addition of a bromine atom and a hydroxyl group to CoQ10 could enhance its anti-diabetic activity. It is anticipated that L-50 could be a promising new agent for T2DM.

4.
J Nanobiotechnology ; 21(1): 369, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37817142

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.


Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Mice , Macrophages , Tuberculosis/drug therapy , Rifampin/pharmacology , Iron
5.
Front Bioeng Biotechnol ; 11: 1254356, 2023.
Article En | MEDLINE | ID: mdl-37823027

Chemotherapy often faces some obstacles such as low targeting effects and drug resistance, which introduce the low therapeutic efficiency and strong side effects. Recent advances in nanotechnology allows the use of novel nanosystems for targeted drug delivery, although the chemically synthesized nanomaterials always show unexpected low biocompability. The emergence of exosome research has offered a better understanding of disease treatment and created novel opportunities for developing effective drug delivery systems with high biocompability. Moreover, RNA interference has emerged as a promising strategy for disease treatments by selectively knocking down or over-expressing specific genes, which allows new possibilities to directly control cell signaling events or drug resistance. Recently, more and more interests have been paid to develop optimal delivery nanosystems with high efficiency and high biocompability for drug and functional RNA co-delivery to achieve enhanced chemotherapy. In light of the challenges for developing drug and RNA co-delivery system, exosomes have been found to show very attractive prospects. This review aims to explore current technologies and challenges in the use of exosomes as drug and RNA co-delivery system with a focus on the emerging trends and issues associated with their further applications, which may contribute to the accelerated developments of exosome-based theraputics.

6.
Biochem Biophys Rep ; 35: 101545, 2023 Sep.
Article En | MEDLINE | ID: mdl-37731666

Nonalcoholic steatohepatitis (NASH) represents an inflammatory subtype of nonalcoholic fatty liver disease (NAFLD). The activation of the NOD-like receptor protein 3 (NLRP3) inflammasome triggers pyroptosis, thus propelling the progression from simple steatosis to NASH. Silibinin, a hepatoprotective compound derived from milk thistle, exerts diverse hepatoprotective effects. However, the direct impact of silibinin on NLRP3 inflammasome activation and its ability to mitigate pyroptosis remain uncertain. To address this, we utilized an in vitro model of NASH, employing HepG2 cells treated with deoxycholic acid (DCA) and free fatty acids. Subsequently, we treated these model cells with silibinin for 24 h. Our findings demonstrated that, although there were no significant changes in cellular lipid content, silibinin effectively ameliorated hepatocyte injuries. Silibinin treatment inhibited the activation of the NLRP3 inflammasome and suppressed DCA-induced pyroptosis. Additionally, molecular docking analysis revealed that silibinin exhibited a binding affinity to components of the NLRP3 inflammasome similar to that of MCC950, a selective NLRP3 inhibitor. These results suggest that silibinin may alleviate inflammation in DCA-exposed HepG2 cells by mitigating pyroptosis, possibly through its binding affinity and inhibition of the NLRP3 inflammasome. Overall, our study indicates that silibinin holds promise as a therapeutic agent for NASH by modulating pyroptosis and inhibiting NLRP3 inflammasome activation.

7.
Pharmaceutics ; 15(8)2023 Aug 07.
Article En | MEDLINE | ID: mdl-37631310

Tuberculosis (TB), one of the top ten causes of death globally induced by the infection of Mycobacterium tuberculosis (Mtb), remains a grave public health issue worldwide. With almost one-third of the world's population getting infected by Mtb, between 5% and 10% of these infected individuals are predicted to develop active TB disease, which would not only result in severe tissue damage and necrosis, but also pose serious threats to human life. However, the exact molecular mechanisms underlying the pathogenesis and immunology of TB remain unclear, which significantly restricts the effective control of TB epidemics. Despite significant advances in current detection technologies and treatments for TB, there are still no appropriate solutions that are suitable for simultaneous, early, rapid, and accurate screening of TB. Various cellular events can perturb the development and progression of TB, which are always associated with several specific molecular signaling events controlled by dysregulated gene expression patterns. Long non-coding RNAs (lncRNAs), a kind of non-coding RNA (ncRNA) with a transcript of more than 200 nucleotides in length in eukaryotic cells, have been found to regulate the expression of protein-coding genes that are involved in some critical signaling events, such as inflammatory, pathological, and immunological responses. Increasing evidence has claimed that lncRNAs might directly influence the susceptibility to TB, as well as the development and progression of TB. Therefore, lncRNAs have been widely expected to serve as promising molecular biomarkers and therapeutic targets for TB. In this review, we summarized the functions of lncRNAs and their regulatory roles in the development and progression of TB. More importantly, we widely discussed the potential of lncRNAs to act as TB biomarkers, which would offer new possibilities in novel diagnostic strategy exploration and benefit the control of the TB epidemic.

8.
J Nutr ; 153(7): 1903-1914, 2023 07.
Article En | MEDLINE | ID: mdl-37269906

BACKGROUND: Hepatic cholesterol accumulation is a significant risk factor in the progression of nonalcoholic fatty liver disease (NAFLD) to steatohepatitis. However, the precise mechanism by which stigmasterol (STG) mitigates this process remains unclear. OBJECTIVES: This study aimed to investigate the potential mechanism underlying the protective effect of STG in mice with NAFLD progressing to steatohepatitis while being fed a high-fat and high-cholesterol (HFHC) diet. METHODS: Male C57BL/6 mice were fed an HFHC diet for 16 wk to establish the NAFLD model. Subsequently, the mice received STG or a vehicle via oral gavage while continuing the HFHC diet for an additional 10 wk. The study evaluated hepatic lipid deposition and inflammation as well as the expression of key rate-limiting enzymes involved in the bile acid (BA) synthesis pathways. BAs in the colonic contents were quantified using ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS: Compared with the vehicle control group, STG significantly reduced hepatic cholesterol accumulation (P < 0.01) and suppressed the gene expression of NLRP3 inflammasome and interleukin-18 (P < 0.05) in the livers of HFHC diet-fed mice. The total fecal BA content in the STG group was nearly double that of the vehicle control group. Additionally, the administration of STG increased the concentrations of representative hydrophilic BAs in the colonic contents (P < 0.05) along with the upregulation of gene and protein expression of CYP7B1 (P < 0.01). Furthermore, STG enhanced the α-diversity of the gut microbiota and partially reversed the alterations in the relative abundance of the gut microbiota induced by the HFHC diet. CONCLUSIONS: STG mitigates steatohepatitis by enhancing the alternative pathway for BA synthesis.


Hypercholesterolemia , Non-alcoholic Fatty Liver Disease , Mice , Male , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Stigmasterol/metabolism , Stigmasterol/pharmacology , Cholesterol, Dietary/adverse effects , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Liver/metabolism , Cholesterol/metabolism , Hypercholesterolemia/complications , Bile Acids and Salts/metabolism
9.
Front Immunol ; 14: 1156239, 2023.
Article En | MEDLINE | ID: mdl-37153576

As an essential micronutrient, manganese plays an important role in the physiological process and immune process. In recent decades, cGAS-STING pathway, which can congenitally recognize exogenous and endogenous DNA for activation, has been widely reported to play critical roles in the innate immunity against some important diseases, such as infections and tumor. Manganese ion (Mn2+) has been recently proved to specifically bind with cGAS and activate cGAS-STING pathway as a potential cGAS agonist, however, is significantly restricted by the low stability of Mn2+ for further medical application. As one of the most stable forms of manganese, manganese dioxide (MnO2) nanomaterials have been reported to show multiple promising functions, such as drug delivery, anti-tumor and anti-infection activities. More importantly, MnO2 nanomaterials are also found to be a potential candidate as cGAS agonist by transforming into Mn2+, which indicates their potential for cGAS-STING regulations in different diseased conditions. In this review, we introduced the methods for the preparation of MnO2 nanomaterials as well as their biological activities. Moreover, we emphatically introduced the cGAS-STING pathway and discussed the detailed mechanisms of MnO2 nanomaterials for cGAS activation by converting into Mn2+. And we also discussed the application of MnO2 nanomaterials for disease treatment by regulating cGAS-STING pathway, which might benefit the future development of novel cGAS-STING targeted treatments based on MnO2 nanoplatforms.


Neoplasms , Signal Transduction , Humans , Manganese , Manganese Compounds/pharmacology , Oxides/therapeutic use , Nucleotidyltransferases/metabolism , Neoplasms/drug therapy
10.
Front Immunol ; 14: 1128840, 2023.
Article En | MEDLINE | ID: mdl-36926351

Manganese (Mn), a nutrient inorganic trace element, is necessary for a variety of physiological processes of animal body due to their important roles in oxidative regulation effects and other aspects of activities. Moreover, manganese ion (Mn2+) has widely reported to be crucial for the regulations of different immunological responses, thus showing promising application as potential adjuvants and immunotherapeutics. Taking the advantages of Mn-based biological and immunological activities, Manganese dioxide nanoparticles (MnO2 NPs) are a new type of inorganic nanomaterials with numerous advantages, including simple preparation, low cost, environmental friendliness, low toxicity, biodegradable metabolism and high bioavailability. MnO2 NPs, as a kind of drug carrier, have also shown the ability to catalyze hydrogen peroxide (H2O2) to produce oxygen (O2) under acidic conditions, which can enhance the efficacy of radiotherapy, chemotherapy and other therapeutics for tumor treatment by remodeling the tumor microenvironment. More importantly, MnO2 NPs also play important roles in immune regulations both in innate and adaptive immunity. In this review, we summarize the biological activities of Manganese, followed by the introduction for the biological and medical functions and mechanisms of MnO2 NPs. What's more, we emphatically discussed the immunological regulation effects and mechanisms of MnO2 NPs, as well as their potentials to serve as adjuvants and immunomodulators, which might benefit the development of novel vaccines and immunotherapies for more effective disease control.


Nanoparticles , Vaccines , Animals , Manganese Compounds/pharmacology , Manganese Compounds/metabolism , Manganese , Oxides/pharmacology , Hydrogen Peroxide/metabolism , Nanoparticles/metabolism , Oxygen , Immunotherapy
11.
Front Nutr ; 10: 1116051, 2023.
Article En | MEDLINE | ID: mdl-36819694

Autophagy, one of the major intracellular degradation systems, plays an important role in maintaining normal cellular physiological functions and protecting organisms from different diseases. Selenium (Se), an essential trace element, is involved in many metabolic regulatory signaling events and plays a key role in human health. In recent years, selenium nanoparticles (Se NPs) have attracted increasing attentions in biomedical field due to their low toxicity, high bioavailability and high bioactivity. Taking the advantage of their advanced biological activities, Se NPs can be used alone as potential therapeutic agents, or combine with other agents and served as carriers for the development of novel therapeutics. More interestingly, Se NPs have been widely reported to affect autophagy signaling, which therefor allow Se NPs to be used as potential therapeutic agents against different diseases. Here, this review suggested the relationships between Se and autophagy, followed by the trends and recent progresses of Se NPs for autophagy regulation in different diseased conditions. More importantly, this work discussed the roles and potential mechanisms of Se NPs in autophagy regulating, which might enhance our understanding about how Se NPs regulate autophagy for potential disease treatment. This work is expected to promote the potential application of Se NPs as novel autophagy regulators, which might benefit the development of novel autophagy associated therapeutics.

12.
Pharmaceutics ; 14(11)2022 Oct 31.
Article En | MEDLINE | ID: mdl-36365168

Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.

13.
Inflammation ; 45(2): 639-650, 2022 Apr.
Article En | MEDLINE | ID: mdl-34674097

Nonalcoholic steatohepatitis (NASH) is the inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), which can lead to liver fibrosis and cirrhosis. Bile acid levels are correlated with markers of hepatic injury in NASH, suggesting a possible role for bile acids in the progression of NAFLD. Here, we examined the role of deoxycholic acid (DCA) in driving steatotic hepatocytes to pyroptosis, a pro-inflammatory form of programmed cell death. HepG2 cells were stimulated with odium oleate and sodium palmitate for modeling steatotic hepatocytes and then treated with DCA alone or in combination with a specific mitophagy agonist, carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Our results showed that DCA dose-dependently induced a pro-inflammatory response in steatotic hepatocytes but had no significant effect on lipid accumulation. Moreover, activation of the NLRP3 inflammasome and pyroptosis were triggered by DCA. Expression levels of the mitophagy markers PTEN-induced kinase 1 (PINK1) and E3 ubiquitin ligase Parkin were significantly diminished by DCA, whereas induction of mitophagy by CCCP prevented DCA-induced inflammatory response and restored the pyroptosis. Collectively, our data showed that DCA-induced pyroptosis involves the inhibition of PINK1-mediated mitophagy and the activation of the NLRP3 inflammasome. These findings provide insight into the association of DCA with mitophagy, pyroptosis, and inflammation in NASH.


Mitophagy , Pyroptosis , Deoxycholic Acid/pharmacology , Fatty Acids, Nonesterified/pharmacology , Hepatocytes/metabolism , Humans , Protein Kinases/metabolism , Ubiquitin-Protein Ligases
14.
Anat Rec (Hoboken) ; 305(7): 1672-1681, 2022 07.
Article En | MEDLINE | ID: mdl-34708578

Effective therapeutics are not available for acute lung injury (ALI) and acute respiratory distress syndrome. Modified Xiaoqinglong decoction (M-XQL) is reported to effectively treat pneumonia, but the underlying mechanisms are unclear. In this study, the therapeutic effect and mechanism of M-XQL were examined using a lipopolysaccharide (LPS)-induced ALI mouse model. The effects of M-XQL on lung injury, inflammatory responses, and cell apoptosis were analyzed. Additionally, high-throughput sequencing was performed to evaluate the therapeutic mechanism of M-XQL. Pretreatment with M-XQL significantly and dose-dependently mitigated the pathological changes and upregulation of pulmonary, nitric oxide content and cell apoptosis and serum tumor necrosis factor-alpha contents in the LPS-induced ALI mouse model. RNA sequencing analysis revealed that the expression of several arachidonic acid metabolism-associated genes in the LPS + high-dose M-XQL group differed from that in the LPS group. In particular, the Cbr2, Cyp4f18, and Cyp2e1 levels were upregulated, whereas the Alox12, Ptges, and Ptges2 levels were downregulated in the LPS + high-dose M-XQL group. These results suggest that M-XQL exerts therapeutic effects in ALI mice by regulating arachidonic acid metabolism and exerting anti-apoptotic and anti-inflammatory effects. Thus, M-XQL is a potential agent for the clinical treatment of ALI.


Acute Lung Injury , Lipopolysaccharides , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Arachidonic Acid/therapeutic use , Lipopolysaccharides/toxicity , Lung/metabolism , Mice
15.
Front Cell Infect Microbiol ; 12: 1074533, 2022.
Article En | MEDLINE | ID: mdl-36776549

Introduction: As a deadly disease induced by Mycobacterium tuberculosis (Mtb), tuberculosis remains one of the top killers among infectious diseases. The low intracellular Mtb killing efficiency of current antibiotics introduced the long duration anti-TB therapy in clinic with strong side effects and increased drug-resistant mutants. Therefore, the exploration of novel anti-TB agents with potent anti-TB efficiency becomes one of the most urgent issues for TB therapies. Methods: Here, we firstly introduced a novel method for the preparation of zinc oxide-selenium nanoparticles (ZnO-Se NPs) by the hybridization of zinc oxide and selenium to combine the anti-TB activities of zinc oxide nanoparticles and selenium nanoparticles. We characterized the ZnO-Se NPs by dynamic laser light scattering and transmission electron microscopy, and then tested the inhibition effects of ZnO-Se NPs on extracellular Mtb by colony-forming units (CFU) counting, bacterial ATP analysis, bacterial membrane potential analysis and scanning electron microscopy imaging. We also analyzed the effects of ZnO-Se NPs on the ROS production, mitochondrial membrane potential, apoptosis, autophagy, polarization and PI3K/Akt/mTOR signaling pathway of Mtb infected THP-1 macrophages. At last, we also tested the effects of ZnO-Se NPs on intracellular Mtb in THP-1 cells by colony-forming units (CFU) counting. Results: The obtained spherical core-shell ZnO-Se NPs with average diameters of 90 nm showed strong killing effects against extracellular Mtb, including BCG and the virulent H37Rv, by disrupting the ATP production, increasing the intracellular ROS level and destroying the membrane structures. More importantly, ZnO-Se NPs could also inhibit intracellular Mtb growth by promoting M1 polarization to increase the production of antiseptic nitric oxide and also promote apoptosis and autophagy of Mtb infected macrophages by increasing the intracellular ROS, disrupting mitochondria membrane potential and inhibiting PI3K/Akt/mTOR signaling pathway. Discussion: These ZnO-Se NPs with synergetic anti-TB efficiency by combining the Mtb killing effects and host cell immunological inhibition effects were expected to serve as novel anti-TB agents for the development of more effective anti-TB strategy.


Antitubercular Agents , Mycobacterium tuberculosis , Nanoparticles , Selenium , Zinc Oxide , Adenosine Triphosphate , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Nanoparticles/chemistry , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Selenium/pharmacology , TOR Serine-Threonine Kinases , Zinc Oxide/pharmacology , Zinc Oxide/chemistry
16.
Zhongguo Zhen Jiu ; 33(8): 673-7, 2013 Aug.
Article Zh | MEDLINE | ID: mdl-24195203

OBJECTIVE: To optimize the best acupuncture therapy in the treatment of lumbar disc herniation (LDH) and to explore its mechanism in terms of immunology. METHODS: One hundred and eleven cases were randomized into an acupuncture-moxibustion group, an elongated needle group and a herb-partitioned moxibustion group, 37 cases in each group. In acupuncture-moxibustion group, penetration needling with elongated needle was applied at Dachangshu (BL 25), Guanyuanshu (BL 26) and Huantiao (GB 30), which was followed with herb-partitioned moxibustion at Shenque (CV 8) and Yaoyangguan (GV 3), etc, once a day. Elongated needle and herb-partitioned moxibustion were applied in the elongated needle group and herb-partitioned moxibustion group respectively. The efficacy of each group was observed after 21 treatments and the value of serum immunoglobulin was measured and analyzed before and after treatment. RESULTS: The effective rate was 97.3% (36/37) in acupuncture-moxibustion group, which was superior to 75.7% (28/37) in the elongated needle group and 73.0% (27/37) in the herb-partitioned moxibustion group (both P<0.05). The visual analogue scale (VAS), straight-leg raising range and motion range of the lumbar vertebra in three groups were all improved after treatment (all P<0.05), which was more significant in the acupuncture-moxibustion group (all P<0.05). The difference of value of serum immunoglobulin before and after treatment was significant in the acupuncture-moxibustion group (P<0.05), which was not in the elongated needle group and the herb-partitioned moxibustion group (both P>0.05). CONCLUSION: The therapy of elongated needle combined with herb-partitioned moxibustion achieves superior efficacy in the treatment of LDH as compared with elongated needle or herb-partitioned moxibustion therapy, and it can regulate the humoral immunity system of patients.


Acupuncture Therapy , Intervertebral Disc Displacement/therapy , Moxibustion , Acupuncture Points , Acupuncture Therapy/instrumentation , Adult , Female , Humans , Male , Middle Aged , Treatment Outcome , Young Adult
17.
Zhongguo Zhen Jiu ; 30(5): 379-82, 2010 May.
Article Zh | MEDLINE | ID: mdl-20518173

OBJECTIVE: To observe the therapeutic effect of heat sensitive moxibustion treatment for nerve root cervical spondylosis. METHODS: One hundred and sixty cases were randomly divided into a heat sensitive moxibustion group (n = 54), a traditional hanging moxibustion group (n = 53) and an acupuncture group (n = 53). In heat sensitive moxibustion group, heat sensitive points were explored among acupoints on neck and nucha, lateral part of forearm and crus, etc. In traditional hanging moxibustion group and acupuncture group, Jiaji (EX-B 2) points, Fengchi (GB 20), Jianwaishu (SI 14) etc. were used for hanging moxibustion and acupuncture, respectively. And scores of Pain Rating Index (PRI), as well as therapeutic effect were evaluated before and after treatment. RESULTS: The effective rate was 98.0% (50/51) in the heat sensitive moxibustion group, 83.0% (39/47) in traditional hanging moxibustion group, and 89.6% (43/48) in acupuncture group. The therapeutic effect of heat sensitive moxibustion group was better than that of acupuncture group (P < 0.05), and it was better in acupuncture group than that of traditional hanging moxibustion group (P < 0.05); PRI scores were all decreased in three groups after treatment (all P < 0.001); pain alleviation in heat sensitive moxibustion group was better than that of acupuncture group (P < 0.05), and it was better in acupuncture group than that of traditional hanging moxibustion group (P < 0.05). CONCLUSION: The therapeutic effect of heat sensitive moxibustion treatment for nerve root cervical spondylosis is better than that of traditional hanging moxibustion and acupuncture.


Cervical Vertebrae , Moxibustion/methods , Spondylosis/therapy , Adult , Aged , Female , Hot Temperature , Humans , Male , Medicine, Chinese Traditional , Middle Aged , Spinal Nerve Roots
...