Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7417, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973815

RESUMEN

The early-life gut microbiome development has long-term health impacts and can be influenced by factors such as infant diet. Human milk oligosaccharides (HMOs), an essential component of breast milk that can only be metabolized by some beneficial gut microorganisms, ensure proper gut microbiome establishment and infant development. However, how HMOs are metabolized by gut microbiomes is not fully elucidated. Isolate studies have revealed the genetic basis for HMO metabolism, but they exclude the possibility of HMO assimilation via synergistic interactions involving multiple organisms. Here, we investigate microbiome responses to 2'-fucosyllactose (2'FL), a prevalent HMO and a common infant formula additive, by establishing individualized microbiomes using fecal samples from three infants as the inocula. Bifidobacterium breve, a prominent member of infant microbiomes, typically cannot metabolize 2'FL. Using metagenomic data, we predict that extracellular fucosidases encoded by co-existing members such as Ruminococcus gnavus initiate 2'FL breakdown, thus critical for B. breve's growth. Using both targeted co-cultures and by supplementation of R. gnavus into one microbiome, we show that R. gnavus can promote extensive growth of B. breve through the release of lactose from 2'FL. Overall, microbiome cultivation combined with genome-resolved metagenomics demonstrates that HMO utilization can vary with an individual's microbiome.


Asunto(s)
Bifidobacterium , Microbiota , Femenino , Niño , Humanos , Lactante , Bifidobacterium/genética , Bifidobacterium/metabolismo , Trisacáridos/metabolismo , Leche Humana/química , Oligosacáridos/metabolismo
2.
Cell Chem Biol ; 30(11): 1377-1389.e8, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37586370

RESUMEN

TruAB Discovery is an approach that integrates cellular immunology, high-throughput immunosequencing, bioinformatics, and computational biology in order to discover naturally occurring human antibodies for prophylactic or therapeutic use. We adapted our previously described pairSEQ technology to pair B cell receptor heavy and light chains of SARS-CoV-2 spike protein-binding antibodies derived from enriched antigen-specific memory B cells and bulk antibody-secreting cells. We identified approximately 60,000 productive, in-frame, paired antibody sequences, from which 2,093 antibodies were selected for functional evaluation based on abundance, isotype and patterns of somatic hypermutation. The exceptionally diverse antibodies included RBD-binders with broad neutralizing activity against SARS-CoV-2 variants, and S2-binders with broad specificity against betacoronaviruses and the ability to block membrane fusion. A subset of these RBD- and S2-binding antibodies demonstrated robust protection against challenge in hamster and mouse models. This high-throughput approach can accelerate discovery of diverse, multifunctional antibodies against any target of interest.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Humanos , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Anticuerpos Antivirales
3.
Nat Ecol Evol ; 7(4): 557-569, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36941345

RESUMEN

Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.


Asunto(s)
Conducta Social , Sudor , Abejas , Animales , Reproducción , Fenotipo
4.
Cell Rep ; 42(1): 112014, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36681898

RESUMEN

The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike. Most IgGs that do not neutralize Omicron bind either entirely monovalently or have some (22%-50%) monovalent occupancy. Cleavage of bivalent-binding IgGs to Fabs abolishes neutralization and binding affinity, with disproportionate loss of activity against Omicron pseudovirus and spike. These results suggest that VoC-resistant antibodies overcome mutagenic substitution via avidity. Hence, vaccine strategies targeting future SARS-CoV-2 variants should consider epitope display with spacing and organization identical to trimeric spike.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Etnicidad , Epítopos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Pruebas de Neutralización
5.
Nat Microbiol ; 7(1): 34-47, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34873292

RESUMEN

Understanding microbial gene functions relies on the application of experimental genetics in cultured microorganisms. However, the vast majority of bacteria and archaea remain uncultured, precluding the application of traditional genetic methods to these organisms and their interactions. Here, we characterize and validate a generalizable strategy for editing the genomes of specific organisms in microbial communities. We apply environmental transformation sequencing (ET-seq), in which nontargeted transposon insertions are mapped and quantified following delivery to a microbial community, to identify genetically tractable constituents. Next, DNA-editing all-in-one RNA-guided CRISPR-Cas transposase (DART) systems for targeted DNA insertion into organisms identified as tractable by ET-seq are used to enable organism- and locus-specific genetic manipulation in a community context. Using a combination of ET-seq and DART in soil and infant gut microbiota, we conduct species- and site-specific edits in several bacteria, measure gene fitness in a nonmodel bacterium and enrich targeted species. These tools enable editing of microbial communities for understanding and control.


Asunto(s)
Microbioma Gastrointestinal/genética , Edición Génica/métodos , Genoma Bacteriano , Consorcios Microbianos/genética , Microbiología del Suelo , Archaea/genética , Bacterias/clasificación , Sistemas CRISPR-Cas , Humanos , Lactante , ARN Guía de Kinetoplastida
6.
Mol Ecol ; 30(24): 6627-6641, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34582590

RESUMEN

The evolution of mass raiding has allowed army ants to become dominant arthropod predators in the tropics. Although a century of research has led to many discoveries about behavioural, morphological and physiological adaptations in army ants, almost nothing is known about the molecular basis of army ant biology. Here we report the genome of the iconic New World army ant Eciton burchellii, and show that it is unusually compact, with a reduced gene complement relative to other ants. In contrast to this overall reduction, a particular gene subfamily (9-exon ORs) expressed predominantly in female antennae is expanded. This subfamily has previously been linked to the recognition of hydrocarbons, key olfactory cues used in insect communication and prey discrimination. Confocal microscopy of the brain showed a corresponding expansion in a putative hydrocarbon response centre within the antennal lobe, while scanning electron microscopy of the antenna revealed a particularly high density of hydrocarbon-sensitive sensory hairs. E. burchellii shares these features with its predatory and more cryptic relative, the clonal raider ant. By integrating genomic, transcriptomic and anatomical analyses in a comparative context, our work thus provides evidence that army ants and their relatives possess a suite of modifications in the chemosensory system that may be involved in behavioural coordination and prey selection during social predation. It also lays the groundwork for future studies of army ant biology at the molecular level.


Asunto(s)
Hormigas , Adaptación Fisiológica , Animales , Hormigas/genética , Femenino , Genoma , Genómica , Conducta Predatoria
7.
Nat Commun ; 11(1): 1688, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245943

RESUMEN

The cyanobacterium Synechococcus elongatus is a model organism for the study of circadian rhythms. It is naturally competent for transformation-that is, it takes up DNA from the environment, but the underlying mechanisms are unclear. Here, we use a genome-wide screen to identify genes required for natural transformation in S. elongatus, including genes encoding a conserved Type IV pilus, genes known to be associated with competence in other bacteria, and others. Pilus biogenesis occurs daily in the morning, while natural transformation is maximal when the onset of darkness coincides with the dusk circadian peak. Thus, the competence state in cyanobacteria is regulated by the circadian clock and can adapt to seasonal changes of day length.


Asunto(s)
Relojes Circadianos/fisiología , Fimbrias Bacterianas/metabolismo , Synechococcus/fisiología , Transformación Bacteriana/fisiología , Adaptación Fisiológica/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Elementos Transponibles de ADN/genética , Oscuridad , Regulación Bacteriana de la Expresión Génica/fisiología , Transferencia de Gen Horizontal , Modelos Biológicos , Mutación , Estaciones del Año , Factores de Transcripción/metabolismo
8.
Philos Trans R Soc Lond B Biol Sci ; 374(1777): 20180247, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31154980

RESUMEN

The evolutionary origins of eusociality represent increases in complexity from individual to caste-based, group reproduction. These behavioural transitions have been hypothesized to go hand in hand with an increased ability to regulate when and where genes are expressed. Bees have convergently evolved eusociality up to five times, providing a framework to test this hypothesis. To examine potential links between putative gene regulatory elements and social evolution, we compare alignable, non-coding sequences in 11 diverse bee species, encompassing three independent origins of reproductive division of labour and two elaborations of eusocial complexity. We find that rates of evolution in a number of non-coding sequences correlate with key social transitions in bees. Interestingly, while we find little evidence for convergent rate changes associated with independent origins of social behaviour, a number of molecular pathways exhibit convergent rate changes in conjunction with subsequent elaborations of social organization. We also present evidence that many novel non-coding regions may have been recruited alongside the origin of sociality in corbiculate bees; these loci could represent gene regulatory elements associated with division of labour within this group. Thus, our findings are consistent with the hypothesis that gene regulatory innovations are associated with the evolution of eusociality and illustrate how a thorough examination of both coding and non-coding sequence can provide a more complete understanding of the molecular mechanisms underlying behavioural evolution. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.


Asunto(s)
Abejas/genética , Evolución Molecular , Regiones no Traducidas , Animales , Abejas/clasificación , Abejas/fisiología , Conducta Animal , ADN/genética , Femenino , Masculino , Filogenia , Reproducción , Conducta Social
9.
BMC Genomics ; 20(1): 1029, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31888487

RESUMEN

BACKGROUND: Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. RESULTS: Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. CONCLUSIONS: Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.


Asunto(s)
Enfermedades de los Animales/etiología , Abejas/genética , Conducta Animal , Infecciones/veterinaria , Transcriptoma , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Modelos Biológicos
10.
Trends Microbiol ; 27(3): 231-242, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30527541

RESUMEN

Cyanobacteria are photosynthetic prokaryotes that are influential in global geochemistry and are promising candidates for industrial applications. Because the livelihood of cyanobacteria is directly dependent upon light, a comprehensive understanding of metabolism in these organisms requires taking into account the effects of day-night transitions and circadian regulation. These events synchronize intracellular processes with the solar day. Accordingly, metabolism is controlled and structured differently in cyanobacteria than in heterotrophic bacteria. Thus, the approaches applied to engineering heterotrophic bacteria will need to be revised for the cyanobacterial chassis. Here, we summarize important findings related to diurnal metabolism in cyanobacteria and present open questions in the field.


Asunto(s)
Cianobacterias/fisiología , Fotoperiodo , Fotosíntesis , Biotecnología , Relojes Circadianos , Cianobacterias/genética , Regulación Bacteriana de la Expresión Génica , NADP/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Mol Ecol ; 28(4): 900-916, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30106217

RESUMEN

Acacia-ant mutualists in the genus Pseudomyrmex nest obligately in acacia plants and, as we show through stable isotope analysis, feed at a remarkably low trophic level. Insects with diets such as these sometimes depend on bacterial symbionts for nutritional enrichment. We, therefore, examine the bacterial communities associated with acacia-ants in order to determine whether they host bacterial partners likely to contribute to their nutrition. Despite large differences in trophic position, acacia-ants and related species with generalized diets do not host distinct bacterial taxa. However, we find that a small number of previously undescribed bacterial taxa do differ in relative abundance between acacia-ants and generalists, including several Acetobacteraceae and Nocardiaceae lineages related to common insect associates. Comparisons with an herbivorous generalist, a parasite that feeds on acacias and a mutualistic species with a generalized diet show that trophic level is likely responsible for these small differences in bacterial community structure. While we did not experimentally test for a nutritional benefit to hosts of these bacterial lineages, metagenomic analysis reveals a Bartonella relative with an intact nitrogen-recycling pathway widespread across Pseudomyrmex mutualists and generalists. This taxon may be contributing to nitrogen enrichment of its ant hosts through urease activity and, concordant with an obligately host-associated lifestyle, appears to be experiencing genomewide relaxed selection. The lack of distinctiveness in bacterial communities across trophic level in this group of ants shows a remarkable ability to adjust to varied diets, possibly with assistance from these diverse ant-specific bacterial lineages.


Asunto(s)
Acacia/fisiología , Hormigas/fisiología , Acetobacteraceae/fisiología , Animales , Bartonella/fisiología , Herbivoria/fisiología , Metagenómica , Microbiota/fisiología , Nocardiaceae/fisiología , Simbiosis/genética , Simbiosis/fisiología
12.
Nat Commun ; 9(1): 4338, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30337532

RESUMEN

The emergence of eusociality represents a major evolutionary transition from solitary to group reproduction. The most commonly studied eusocial species, honey bees and ants, represent the behavioral extremes of social evolution but lack close relatives that are non-social. Unlike these species, the halictid bee Lasioglossum albipes produces both solitary and eusocial nests and this intraspecific variation has a genetic basis. Here, we identify genetic variants associated with this polymorphism, including one located in the intron of syntaxin 1a (syx1a), a gene that mediates synaptic vesicle release. We show that this variant can alter gene expression in a pattern consistent with differences between social and solitary bees. Surprisingly, syx1a and several other genes associated with sociality in L. albipes have also been implicated in autism spectrum disorder in humans. Thus, genes underlying behavioral variation in L. albipes may also shape social behaviors across a wide range of taxa, including humans.


Asunto(s)
Abejas/genética , Polimorfismo Genético , Conducta Social , Animales , Secuencia Conservada/genética , Francia , Regulación de la Expresión Génica , Sitios Genéticos , Genoma de los Insectos , Geografía , Humanos , Intrones/genética , Sistemas de Lectura Abierta/genética
13.
R Soc Open Sci ; 5(7): 180369, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30109092

RESUMEN

Social interactions can facilitate transmission of microbes between individuals, reducing variation in gut communities within social groups. Thus, the evolution of social behaviours and symbiont community composition have the potential to be tightly linked. We explored this connection by characterizing the diversity of bacteria associated with both eusocial and solitary bee species within the behaviourally variable family Halictidae using 16S amplicon sequencing. Contrary to expectations, we found few differences in bacterial abundance or variation between social forms; most halictid species appear to share similar gut bacterial communities. However, several strains of Sodalis, a genus described as a symbiont in a variety of insects but yet to be characterized in bees, differ in abundance between eusocial and solitary bees. Phylogenetic reconstructions based on whole-genome alignments indicate that Sodalis has independently colonized halictids at least three times. These strains appear to be mutually exclusive within individual bees, although they are not host-species-specific and no signatures of vertical transmission were observed, suggesting that Sodalis strains compete for access to hosts. The symbiosis between halictids and Sodalis therefore appears to be in its early stages.

14.
Proc Natl Acad Sci U S A ; 115(30): E7174-E7183, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29991601

RESUMEN

The recurrent pattern of light and darkness generated by Earth's axial rotation has profoundly influenced the evolution of organisms, selecting for both biological mechanisms that respond acutely to environmental changes and circadian clocks that program physiology in anticipation of daily variations. The necessity to integrate environmental responsiveness and circadian programming is exemplified in photosynthetic organisms such as cyanobacteria, which depend on light-driven photochemical processes. The cyanobacterium Synechococcus elongatus PCC 7942 is an excellent model system for dissecting these entwined mechanisms. Its core circadian oscillator, consisting of three proteins, KaiA, KaiB, and KaiC, transmits time-of-day signals to clock-output proteins, which reciprocally regulate global transcription. Research performed under constant light facilitates analysis of intrinsic cycles separately from direct environmental responses but does not provide insight into how these regulatory systems are integrated during light-dark cycles. Thus, we sought to identify genes that are specifically necessary in a day-night environment. We screened a dense bar-coded transposon library in both continuous light and daily cycling conditions and compared the fitness consequences of loss of each nonessential gene in the genome. Although the clock itself is not essential for viability in light-dark cycles, the most detrimental mutations revealed by the screen were those that disrupt KaiA. The screen broadened our understanding of light-dark survival in photosynthetic organisms, identified unforeseen clock-protein interaction dynamics, and reinforced the role of the clock as a negative regulator of a nighttime metabolic program that is essential for S. elongatus to survive in the dark.


Asunto(s)
Proteínas Bacterianas , Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Estudio de Asociación del Genoma Completo , Fotosíntesis/fisiología , Transducción de Señal/fisiología , Synechococcus , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
15.
Nature ; 557(7706): 503-509, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29769716

RESUMEN

One-third of all protein-coding genes from bacterial genomes cannot be annotated with a function. Here, to investigate the functions of these genes, we present genome-wide mutant fitness data from 32 diverse bacteria across dozens of growth conditions. We identified mutant phenotypes for 11,779 protein-coding genes that had not been annotated with a specific function. Many genes could be associated with a specific condition because the gene affected fitness only in that condition, or with another gene in the same bacterium because they had similar mutant phenotypes. Of the poorly annotated genes, 2,316 had associations that have high confidence because they are conserved in other bacteria. By combining these conserved associations with comparative genomics, we identified putative DNA repair proteins; in addition, we propose specific functions for poorly annotated enzymes and transporters and for uncharacterized protein families. Our study demonstrates the scalability of microbial genetics and its utility for improving gene annotations.


Asunto(s)
Bacterias/genética , Genes Bacterianos/genética , Anotación de Secuencia Molecular , Mutación , Fenotipo , Incertidumbre , Bacterias/citología , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Secuencia Conservada , Reparación del ADN/genética , Aptitud Genética , Genoma Bacteriano/genética , Proteínas Mutantes/clasificación , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología
16.
PLoS Genet ; 14(4): e1007301, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29608558

RESUMEN

The broadly conserved signaling nucleotide cyclic di-adenosine monophosphate (c-di-AMP) is essential for viability in most bacteria where it has been studied. However, characterization of the cellular functions and metabolism of c-di-AMP has largely been confined to the class Bacilli, limiting our functional understanding of the molecule among diverse phyla. We identified the cyclase responsible for c-di-AMP synthesis and characterized the molecule's role in survival of darkness in the model photosynthetic cyanobacterium Synechococcus elongatus PCC 7942. In addition to the use of traditional genetic, biochemical, and proteomic approaches, we developed a high-throughput genetic interaction screen (IRB-Seq) to determine pathways where the signaling nucleotide is active. We found that in S. elongatus c-di-AMP is produced by an enzyme of the diadenylate cyclase family, CdaA, which was previously unexplored experimentally. A cdaA-null mutant experiences increased oxidative stress and death during the nighttime portion of day-night cycles, in which potassium transport is implicated. These findings suggest that c-di-AMP is biologically active in cyanobacteria and has non-canonical roles in the phylum including oxidative stress management and day-night survival. The pipeline and analysis tools for IRB-Seq developed for this study constitute a quantitative high-throughput approach for studying genetic interactions.


Asunto(s)
AMP Cíclico/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Synechococcus/fisiología , Proteínas Bacterianas/metabolismo , Mutación , Estrés Oxidativo , Liasas de Fósforo-Oxígeno/metabolismo , Proteómica , Transducción de Señal , Synechococcus/genética , Synechococcus/metabolismo
17.
Integr Comp Biol ; 57(4): 682-689, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28655188

RESUMEN

Identifying the factors that structure host-associated microbiota is critical to understand the role these microbes may play in host ecology and evolutionary history. To begin to address this question we investigate the diversity and persistence of the bacterial community of the giant Neotropical bullet ant, Paraponera clavata. We included samples from four widely dispersed locations to address the role geography plays in shaping these communities. To understand how the digestive tract can filter bacterial communities, we sampled mouth and gut communities. To investigate the stability of community members we sampled wild caught and individuals kept on a sterile diet. Only a single bacterial taxon in the Firmicutes is consistently present across individuals, indicating a remarkably simple "core" bacterial community for the giant Neotropical bullet ant. Geography did not explain host bacterial diversity, but we did find significant reductions in diversity between the mouth and the gut tract. Lastly, our diet manipulations highlight the importance of controlled experiments to tease apart persistent microbial communities from environmental transients.


Asunto(s)
Hormigas/microbiología , Microbioma Gastrointestinal , Animales , Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Brasil , Costa Rica , Dieta , Guyana Francesa , Geografía , Boca/microbiología , Perú , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Proc Natl Acad Sci U S A ; 114(4): E580-E589, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28074036

RESUMEN

Cyanobacteria evolved a robust circadian clock, which has a profound influence on fitness and metabolism under daily light-dark (LD) cycles. In the model cyanobacterium Synechococcus elongatus PCC 7942, a functional clock is not required for diurnal growth, but mutants defective for the response regulator that mediates transcriptional rhythms in the wild-type, regulator of phycobilisome association A (RpaA), cannot be cultured under LD conditions. We found that rpaA-null mutants are inviable after several hours in the dark and compared the metabolomes of wild-type and rpaA-null strains to identify the source of lethality. Here, we show that the wild-type metabolome is very stable throughout the night, and this stability is lost in the absence of RpaA. Additionally, an rpaA mutant accumulates excessive reactive oxygen species (ROS) during the day and is unable to clear it during the night. The rpaA-null metabolome indicates that these cells are reductant-starved in the dark, likely because enzymes of the primary nighttime NADPH-producing pathway are direct targets of RpaA. Because NADPH is required for processes that detoxify ROS, conditional LD lethality likely results from inability of the mutant to activate reductant-requiring pathways that detoxify ROS when photosynthesis is not active. We identified second-site mutations and growth conditions that suppress LD lethality in the mutant background that support these conclusions. These results provide a mechanistic explanation as to why rpaA-null mutants die in the dark, further connect the clock to metabolism under diurnal growth, and indicate that RpaA likely has important unidentified functions during the day.


Asunto(s)
Proteínas Bacterianas/metabolismo , Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Proteínas Bacterianas/genética , Ácidos Grasos no Esterificados/metabolismo , Luz , Metaboloma , Mutación , Oxidación-Reducción , Ficobilisomas/metabolismo , Poliaminas/metabolismo
19.
Proc Natl Acad Sci U S A ; 113(51): E8344-E8353, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27911809

RESUMEN

The model cyanobacterium, Synechococcus elongatus PCC 7942, is a genetically tractable obligate phototroph that is being developed for the bioproduction of high-value chemicals. Genome-scale models (GEMs) have been successfully used to assess and engineer cellular metabolism; however, GEMs of phototrophic metabolism have been limited by the lack of experimental datasets for model validation and the challenges of incorporating photon uptake. Here, we develop a GEM of metabolism in S. elongatus using random barcode transposon site sequencing (RB-TnSeq) essential gene and physiological data specific to photoautotrophic metabolism. The model explicitly describes photon absorption and accounts for shading, resulting in the characteristic linear growth curve of photoautotrophs. GEM predictions of gene essentiality were compared with data obtained from recent dense-transposon mutagenesis experiments. This dataset allowed major improvements to the accuracy of the model. Furthermore, discrepancies between GEM predictions and the in vivo dataset revealed biological characteristics, such as the importance of a truncated, linear TCA pathway, low flux toward amino acid synthesis from photorespiration, and knowledge gaps within nucleotide metabolism. Coupling of strong experimental support and photoautotrophic modeling methods thus resulted in a highly accurate model of S. elongatus metabolism that highlights previously unknown areas of S. elongatus biology.


Asunto(s)
Cianobacterias/genética , Regulación de la Expresión Génica , Genes Esenciales , Synechococcus/genética , Carbono/metabolismo , Clorofila/química , Ciclo del Ácido Cítrico , Cianobacterias/metabolismo , Genoma , Mutagénesis , Nucleótidos/metabolismo , Sistemas de Lectura Abierta , Fotones , Fotosíntesis , Synechococcus/metabolismo
20.
Nat Commun ; 7: 12679, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27557866

RESUMEN

Symbiosis-the close and often long-term interaction of species-is predicted to drive genome evolution in a variety of ways. For example, parasitic interactions have been shown to increase rates of molecular evolution, a trend generally attributed to the Red Queen Hypothesis. However, it is much less clear how mutualisms impact the genome, as both increased and reduced rates of change have been predicted. Here we sequence the genomes of seven species of ants, three that have convergently evolved obligate plant-ant mutualism and four closely related species of non-mutualists. Comparing these sequences, we investigate how genome evolution is shaped by mutualistic behaviour. We find that rates of molecular evolution are higher in the mutualists genome wide, a characteristic apparently not the result of demography. Our results suggest that the intimate relationships of obligate mutualists may lead to selective pressures similar to those seen in parasites, thereby increasing rates of evolution.


Asunto(s)
Hormigas/genética , Evolución Molecular , Simbiosis/genética , Animales , Ecosistema , Genómica/métodos , Masculino , Filogenia , Plantas , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA