Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Ecol Resour ; : e13987, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956928

RESUMEN

The utility of a universal DNA 'barcode' fragment (658 base pairs of the Cytochrome C Oxidase I [COI] gene) has been established as a useful tool for species identification, and widely criticized as one for understanding the evolutionary history of a group. Large amounts of COI sequence data have been produced that hold promise for rapid species identification, for example, for biosecurity. The fruit fly tribe Dacini holds about a thousand species, of which 80 are pests of economic concern. We generated a COI reference library for 265 species of Dacini containing 5601 sequences that span most of the COI gene using circular consensus sequencing. We compared distance metrics versus monophyly assessments for species identification and although we found a 'soft' barcode gap around 2% pairwise distance, the exceptions to this rule dictate that a monophyly assessment is the only reliable method for species identification. We found that all fragments regularly used for Dacini fruit fly identification >450 base pairs long provide similar resolution. 11.3% of the species in our dataset were non-monophyletic in a COI tree, which is mostly due to species complexes. We conclude with recommendations for the future generation and use of COI libraries. We revise the generic assignment of Dacus transversus stat. rev. Hardy 1982, and Dacus perpusillus stat. rev. Drew 1971 and we establish Dacus maculipterus White 1998 syn. nov. as a junior synonym of Dacus satanas Liang et al. 1993.

2.
Science ; 381(6664): 1294, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37733869
3.
Mol Phylogenet Evol ; 188: 107892, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37524217

RESUMEN

As genomic data proliferates, the prevalence of post-speciation gene flow is making species boundaries and relationships increasingly ambiguous. Although current approaches inferring fully bifurcating phylogenies based on concatenated datasets provide simple and robust answers to many species relationships, they may be inaccurate because the models ignore inter-specific gene flow and incomplete lineage sorting. To examine the potential error resulting from ignoring gene flow, we generated both a RAD-seq and a 500 protein-coding loci highly multiplexed amplicon (HiMAP) dataset for a monophyletic group of 12 species defined as the Bactrocera dorsalis sensu lato clade. With some of the world's worst agricultural pests, the taxonomy of the B. dorsalis s.l. clade is important for trade and quarantines. However, taxonomic confusion confounds resolution due to intra- and interspecific phenotypic variation and convergence, mitochondrial introgression across half of the species, and viable hybrids. We compared the topological convergence of our datasets using concatenated phylogenetic and various multispecies coalescent approaches, some of which account for gene flow. All analyses agreed on species delimitation, but there was incongruence between species relationships. Under concatenation, both datasets suggest identical species relationships with mostly high statistical support. However, multispecies coalescent and multispecies network approaches suggest markedly different hypotheses and detected significant gene flow. We suggest that the network approaches are likely more accurate because gene flow violates the assumptions of the concatenated phylogenetic analyses, but the data-reductive requirements of network approaches resulted in reduced statistical support and could not unambiguously resolve gene flow directions. Our study highlights the importance of testing for gene flow, particularly with phylogenomic datasets, even when concatenated approaches receive high statistical support.


Asunto(s)
Flujo Génico , Genómica , Animales , Filogenia , Genoma , Insectos/genética
4.
Curr Opin Insect Sci ; 58: 101052, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37150509

RESUMEN

As the amount of genomic data for nonmodel taxa grows, it is increasingly clear that gene flow across species barriers in insects is much more common than previously thought. In recent years, the decreased cost and increased accuracy of long-read sequencing has enabled the assembly of high-quality reference genomes and chromosome maps for nonmodel insects. With this long-read data, we can now not only compare variation across the genome among homologous genes between species, which has been the basis of phylogenetics for more than 30 years, but also tease apart evidence of ancient and recent hybridization and gene flow. The implications of hybridization for species adaptation may be more positive than previously considered, explaining its prevalence across many groups of insects. Unfortunately, due to anthropogenic actions, some pest species appear to be benefitting from hybridization and gene flow, facilitating future invasions.


Asunto(s)
Genómica , Especies Introducidas , Animales , Análisis de Secuencia de ADN , Genoma , Insectos/genética
5.
Cladistics ; 39(1): 1-17, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35944148

RESUMEN

Sesiids are a diverse group of predominantly diurnal moths, many of which are Batesian mimics of Hymenoptera. However, their diversity and relationships are poorly understood. A multi-gene phylogenetic analysis of 48 North American sesiid species confirmed the traditional taxonomic tribal ranks, demonstrated the paraphyly of Carmenta and Synanthedon with respect to several other genera and ultimately provided minimal phylogenetic resolution within and between North American and European groups. Character support from each gene suggested inconsistency between the phylogenetic signal of the CAD gene and that of the other four genes. However, removal of CAD from subsequent phylogenetic analyses did not substantially change the initial phylogenetic results or return Carmenta and Synanthedon as reciprocally monophyletic, suggesting that it was not impacting the overall phylogenetic signal. The lack of resolution using genes that are typically informative at the species level for other lepidopterans suggests a surprisingly rapid radiation of species in Carmenta/Synanthedon. This group also exhibits a wide range of mimicry strategies and hostplant usage, which could be fertile ground for future study.


Asunto(s)
Himenópteros , Mariposas Nocturnas , Animales , Filogenia , Mariposas Nocturnas/genética , Evolución Biológica , América del Norte
6.
R Soc Open Sci ; 9(1): 211862, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35116168

RESUMEN

Understanding the factors driving ecological and evolutionary interactions of economically important plant species is important for agricultural sustainability. The geography of crop wild relatives, including wild potatoes (Solanum section Petota), have received attention; however, such information has not been analysed in combination with phylogenetic histories, genomic composition and reproductive systems to identify potential species for use in breeding for abiotic stress tolerance. We used a combination of ordinary least-squares (OLS) and phylogenetic generalized least-squares (PGLM) analyses to identify the discrete climate classes that make up the climate niche that wild potato species inhabit in the context of breeding system and ploidy. Self-incompatible diploid or self-compatible polyploid species significantly increase the number of discrete climate classes within a climate niche inhabited. This result was sustained when correcting for phylogenetic non-independence in the linear model. Our results support the idea that specific breeding system and ploidy combinations increase niche breadth through the decoupling of geographical range and niche diversity, and therefore, these species may be of particular interest for crop adaptation to a changing climate.

7.
Mol Phylogenet Evol ; 164: 107256, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34256128

RESUMEN

The California Floristic province is a biodiversity hotspot. Understanding the phylogeographic patterns that exist in this diverse region is essential to understanding its evolution and for guiding conservation efforts. Calosaturnia is a charismatic silkmoth genus endemic to large portions of the region with three described species, C. mendocino, C. walterorum, and C. albofasciata. We sampled all three species from across their ranges, sequenced 1463 bp of mitochondrial COI and 1941 bp of nuclear DNA from three genes, and reconstructed phylogenetic relationships and estimated divergence times within the lineages. All three species show pronounced evidence of isolation and, in two cases, secondary reconnection. An unexpected monophyletic mtDNA lineage was found in the Central Coast region, in a region thought to represent an intergrade between C. mendocino and C. walterorum. Our genetic data also significantly revise previous hypotheses as to which species occur in which regions, suggesting that historical ecological changes around four Ma ago isolated some lineages, and a secondary isolation event two Ma ago led to isolation of populations both in the Central Coast region and the southern Sierra Nevada. Our results add to a currently under-appreciated pattern suggesting that coastal Central California is not a transition zone between Northern and Southern California Floristic Province faunas but rather its own unique, periodically isolated, biogeographic region. They also suggest cryptic diversity may be present in many other currently unrecognized groups. Additional research should focus on this central California region because many species may be highly restricted in range and in need of conservation attention.


Asunto(s)
Bombyx , Animales , Biodiversidad , Bombyx/genética , California , ADN Mitocondrial/genética , Variación Genética , Filogenia , Filogeografía
8.
Mol Phylogenet Evol ; 155: 107002, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152535

RESUMEN

Allopatric speciation should be the dominant model of diversification across archipelagos because islands naturally promote isolation. It also follows that ecologically similar, vagile species should be more resistant to this kind of isolation due to dispersal and unifying selection. In a closely-related group of endemic Hawaiian hawkmoths, we found confounding patterns of inter-island connectivity and speciation that did not correlate with vagility, ecological specialization, or island age. Speciation occurred both in allopatric and sympatric taxa, with only the oldest and youngest islands fostering single-island endemic species. The intermediately-sized, central islands supported a combination of endemic and more widely-occurring lineages, suggesting no clear pattern leading to the current diversity in Hawaii. While some species are relatively common, others are apparently extinct or very rare, even on the same island. Further research into the specific mechanisms for these patterns in Hyles may prove broadly informative for understanding both cladogenesis and improving conservation planning. Our study identifies one new species endemic to Kauai and unique mitochondrial lineages in H. perkinsi, which may prove to be new species.


Asunto(s)
Biodiversidad , Mariposas Nocturnas/fisiología , Animales , Teorema de Bayes , Especiación Genética , Genética de Población , Hawaii , Islas , Filogenia , Especificidad de la Especie , Factores de Tiempo
9.
Zookeys ; 973: 103-122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117060

RESUMEN

Although there is scientific consensus on most of the major biogeographic regions in the world, the demarcation of the area connecting Southeast Asia with Australia and Oceania remains debated. Two candidate boundaries potentially explain faunistic diversity patterns in the regions: Lydekker's and Wallace's lines. The islands in between both 'lines' are jointly termed Wallacea, with Sulawesi as the largest landmass. We surveyed Dacini fruit flies (Tephritidae: Dacinae) in Sulawesi between 2016 and 2019 using traps baited with male lures, resulting in 4,517 collected flies. We identified all specimens to species level, which adds 15 new species records to the island, bringing the total number of Dacini species in Sulawesi to 83. The biogeographic affinity of species in the updated checklist reveals a strong connection with former 'Sunda' (41% of species); validating Lydekker's line, but also a high level of endemism (47% of species), confirming the uniqueness of Wallacea as a biogeographic region. We further describe a new species, Bactrocera (Bactrocera) niogreta Doorenweerd, sp. nov. and discuss the taxonomy of several interesting species.

10.
Ecol Evol ; 10(16): 8871-8879, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32884663

RESUMEN

Understanding the factors that determine the realized and potential distribution of a species requires knowledge of abiotic, physiological, limitations as well as ecological interactions. Fungi of the order Laboulbeniales specialize on arthropods and are typically thought to be highly specialized on a single species or closely related group of species. Because infections are almost exclusively transmitted through direct contact between the hosts, the host ecology, to a large extent, determines the distribution and occurrence of the fungus. We examined ~20,000 fruit flies (Diptera: Dacinae) collected in Malaysia, Sulawesi, Australia, and the Solomon Islands between 2017 and 2019 for fungal infections and found 197 infected flies across eight different Bactrocera species. Morphology and 1,363 bps of small subunit (18S) DNA sequences both support that the infections are from a single polyphagous fungal species Stigmatomyces dacinus-a known ectoparasite of these fruit flies. This leads to the question: why is S. dacinus rare, when its hosts are widespread and abundant? In addition, the hosts are all Bactrocera, a genus with ~480 species, but 37 Bactrocera species found sympatric with the hosts were never infected. Host-selection does not appear to be phylogenetically correlated. These results suggest a hidden complexity in how different, but closely related, host species vary in their susceptibility, which somehow limits the abundance and dispersal capability of the fungus.

11.
Sci Rep ; 10(1): 6887, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327680

RESUMEN

Distance decay principles predict that species with larger geographic ranges would have greater intraspecific genetic diversity than more restricted species. However, invasive pest species may not follow this prediction, with confounding implications for tracking phenomena including original ranges, invasion pathways and source populations. We sequenced an 815 base-pair section of the COI gene for 441 specimens of Bactrocera correcta, 214 B. zonata and 372 Zeugodacus cucurbitae; three invasive pest fruit fly species with overlapping hostplants. For each species, we explored how many individuals would need to be included in a study to sample the majority of their haplotype diversity. We also tested for phylogeographic signal and used demographic estimators as a proxy for invasion potency. We find contrasting patterns of haplotype diversity amongst the species, where B. zonata has the highest diversity but most haplotypes were represented by singletons; B. correcta has ~7 dominant haplotypes more evenly distributed; Z. cucurbitae has a single dominant haplotype with closely related singletons in a 'star-shape' surrounding it. We discuss how these differing patterns relate to their invasion histories. None of the species showed meaningful phylogeographic patterns, possibly due to gene-flow between areas across their distributions, obscuring or eliminating substructure.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Variación Genética , Haplotipos/genética , Especies Introducidas , Tephritidae/genética , Animales , Demografía , Genética de Población , Funciones de Verosimilitud , Filogeografía , Especificidad de la Especie
12.
J Hered ; 111(1): 1-20, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31958131

RESUMEN

Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.


Asunto(s)
Adaptación Biológica , Especiación Genética , Animales , Filogeografía , Plantas , Análisis Espacial , Tiempo
13.
Zookeys ; 876: 87-109, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31592216

RESUMEN

We engaged in six years of snap-shot surveys for fruit flies in rural environments and ten protected forest areas of Bangladesh, using traps baited with male lures (cue-lure, methyl eugenol, zingerone). Our work has increased the recorded number of species of Tephritidae in the country from seven to 37. We summarize these surveys and report eight new country occurrence records, and a new species (Zeugodacus madhupuri Leblanc & Doorenweerd, sp. nov.) is described. The highlight among the new records is the discovery, and significant westward range extension, of Bactrocera carambolae Drew & Hancock, a major fruit pest detected in the Chattogram and Sylhet Divisions. We rectify the previously published erroneous record of Bactrocera bogorensis (Hardy), which was based on a misidentification of Zeugodacus diaphorus (Hendel). We also report the occurrence in Bangladesh of nine other Tephritidae, the rearing of three primary fruit fly parasitoids from Zeugodacus, and records of non-target attraction to fruit fly lures.

14.
Zootaxa ; 4545(2): 277-285, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30790901

RESUMEN

Two new endemic Hawaiian species of Agrotis Ochsenheimer (Noctuidae) are described: A. helela and A. kuamauna. Both species are day-flying and occur at high-elevations. Observations of adult and larval morphology and biology are included, as well as illustrations of adult moths and genitalia for both sexes.


Asunto(s)
Mariposas Nocturnas , Animales , Biología , Femenino , Genitales , Hawaii , Larva , Masculino
15.
Zookeys ; (797): 87-115, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30505163

RESUMEN

Recent snap-shot surveys for fruit flies in Vietnam in 2015 and 2017 using traps baited with the male Dacinae fruit fly lures methyl eugenol, cue-lure and zingerone, collected 56 species, including 11 new country records and another 11 undescribed species, four of which are described in this paper. This increases the number of described species known to occur in Vietnam from 78 to 93. Species accumulation curves, based on the Chao 2 mean estimate, suggest that we collected 60-85 % of the local fauna at the sites sampled, and that species diversity decreases with increasing latitude. The four new species are named: Bactrocera (Tetradacus) ernesti Leblanc & Doorenweerd sp. n., B. (Asiadacus) connecta Leblanc & Doorenweerd sp. n., B. (Parazeugodacus) clarifemur Leblanc & Doorenweerd sp. n., and B. (Bactrocera) adamantea Leblanc & Doorenweerd sp. n. In addition to morphological data COI DNA sequence data of both the COI-5P and COI-3P mitochondrial DNA gene regions is provided. Three of the four newly described species are morphologically and genetically easily distinguished from all other members of Dacini. Bactroceraclarifemur sp. n. is superficially similar to B.pendleburyi (Perkins) based on morphology, but there are several apomorphic characters to distinguish the two. Both COI and a segment of the nuclear gene Elongation Factor 1 alpha separate the two species as well.

16.
Zookeys ; (795): 105-114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30473611

RESUMEN

A fruit fly survey in the Sinharaja and Knuckles National Parks in Sri Lanka (2016), using traps baited with the male lures methyl eugenol, cue-lure, and zingerone, yielded 21 species of Dacini fruit flies. Of these, three species, viz. Bactroceraamarambalensis Drew, B.dongnaiae Drew & Romig, and B.rubigina (Wang & Zhao), are new country occurrence records, and Dacus (Mellesis) ancoralis Leblanc & Doorenweerd, sp. n. is described as a new species. The Sri Lankan Dacini fruit fly fauna is now comprised of 39 species.

17.
J Econ Entomol ; 111(6): 2914-2926, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30247661

RESUMEN

Bactrocera carambolae Drew and Hancock and Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) are important pests of many fruits. These flies have been spread across the world through global travel and trade, and new areas are at risk of invasion. Whenever new invasive populations are discovered, quick and accurate identification is needed to mitigate the damage they can cause. Determining invasive pathways can prevent further spread of pests as well as subsequent reinvasions through the same pathway. Molecular markers can be used for both species identification and pathway analysis. We analyzed 1,601 individuals from 19 populations using 765 base pairs of the mitochondrial cytochrome oxidase I (COI) gene to infer the haplotype diversity and population structure within these flies from across their native and invasive ranges. We analyzed these samples by either grouping by species or geographic populations due to the genetic similarity in the mitochondrial genome. We found no genetic structure between B. dorsalis and B. carambolae and our findings suggest recent and most likely ongoing, genetic exchange between these two species in the wild. Hyper-diverse mitochondrial genetic diversity in the native range suggests large population sizes and relatively high mutation rates. Only 52% of the haplotypes found in the trap captures from California are shared with haplotypes from flies found in our global survey, indicating significant genetic diversity in the native range that is missing from our samples. However, these results provide a foundation for the accurate determination of the provenance of invasive populations around the world.


Asunto(s)
Especies Introducidas , Tephritidae/genética , Animales , ADN Mitocondrial/análisis , Variación Genética , Haplotipos , Hibridación Genética , Filogeografía
18.
Mol Ecol ; 27(22): 4459-4474, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30252975

RESUMEN

Biological control agents have several advantages over chemical control for pest management, including the capability to restore ecosystem balance with minimal non-target effects and a lower propensity for targets to develop resistance. These factors are particularly important for invasive species control. The coconut rhinoceros beetle (Oryctes rhinoceros Linnaeus) is a major palm pest that invaded many Pacific islands in the early 20th century through human-mediated dispersal. Application of the Oryctes nudivirus in the 1960s successfully halted the beetle's first invasion wave and made it a textbook example of successful biological control. However, a recently discovered O. rhinoceros biotype that is resistant to the nudivirus appears to be correlated with a new invasion wave. We performed a population genomics analysis of 172 O. rhinoceros from seven regions, including native and invasive populations, to reconstruct invasion pathways and explore correlation between recent invasions and biotypes. With ddRAD sequencing, we generated data sets ranging from 4,000 to 209,000 loci using stacks and ipyrad software pipelines and compared genetic signal in downstream clustering and phylogenetic analyses. Analysis suggests that the O. rhinoceros resurgence is mediated by the nudivirus-resistant biotype. Genomic data have been proven essential to understanding the new O. rhinoceros biotype's invasion patterns and interactions with the original biotype. Such information is crucial to optimization of strategies for quarantine and control of resurgent pests. Our results demonstrate that while invasions are relatively rare events, new introductions can have significant ecological consequences, and quarantine vigilance is required even in previously invaded areas.


Asunto(s)
Cocos , Escarabajos/genética , Escarabajos/virología , Genética de Población , Control Biológico de Vectores , Animales , Agentes de Control Biológico , Resistencia a la Enfermedad/genética , Especies Introducidas , Islas del Pacífico , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
19.
Mol Ecol ; 27(22): 4417-4429, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30267600

RESUMEN

Local adaptation can be a fundamental component of speciation, but its dynamics in relation to gene flow are not necessarily straightforward. Herbivorous taxa with localized host plant or habitat specialization across their geographic range are ideal models for investigating the patterns and constraints of local adaptation and its impact on diversification. The charismatic, day-flying moths of the Hemileuca maia species complex (Lepidoptera: Saturniidae) are such taxa, as they are geographically widespread, exhibit considerable ecological and morphological variability and host and habitat specificity, but apparently lack genetic differentiation across their range. Here, we use genomewide single nucleotide polymorphisms to assess relationships and population structure of this group across North America and investigate the scales where genomic divergence correlates with adaptive ecological characteristics. In contrast to previous genetic studies of the group, we find broad- and fine-scale genetic differentiation between lineages, which is at odds with various levels of taxonomic description and recognition of conservation units. Furthermore, ecological specialization only explains some fine-scale genetic differentiation, and across much of the group's range, local adaptation is apparently occurring in the face of strong gene flow. These results provide unprecedented insight into drivers of speciation in this group, the relationship between taxonomy and genomics-informed species boundaries and conservation management of internationally protected entities. Broadly, this system provides a model for understanding how local adaptation in an herbivore can arise and be maintained in the face of apparently strong gene flow, and the importance of geographic isolation in generating genomic divergence, despite a lack of ecological divergence.


Asunto(s)
Flujo Génico , Especiación Genética , Genética de Población , Mariposas Nocturnas/clasificación , Filogenia , Adaptación Fisiológica , Animales , Ecosistema , América del Norte , Polimorfismo de Nucleótido Simple
20.
Mol Ecol Resour ; 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29633537

RESUMEN

High-throughput sequencing has fundamentally changed how molecular phylogenetic data sets are assembled, and phylogenomic data sets commonly contain 50- to 100-fold more loci than those generated using traditional Sanger sequencing-based approaches. Here, we demonstrate a new approach for building phylogenomic data sets using single-tube, highly multiplexed amplicon sequencing, which we name HiMAP (highly multiplexed amplicon-based phylogenomics) and present bioinformatic pipelines for locus selection based on genomic and transcriptomic data resources and postsequencing consensus calling and alignment. This method is inexpensive and amenable to sequencing a large number (hundreds) of taxa simultaneously and requires minimal hands-on time at the bench (<1/2 day), and data analysis can be accomplished without the need for read mapping or assembly. We demonstrate this approach by sequencing 878 amplicons in single reactions for 82 species of tephritid fruit flies across seven genera (384 individuals), including some of the most economically important agricultural insect pests. The resulting filtered data set (>150,000-bp concatenated alignment, ~20% missing character sites across all individuals and amplicons) contained >40,000 phylogenetically informative characters, and although some discordance was observed between analyses, it provided unparalleled resolution of many phylogenetic relationships in this group. Most notably, we found high support for the generic status of Zeugodacus and the sister relationship between Dacus and Zeugodacus. We discuss HiMAP, with regard to its molecular and bioinformatic strengths, and the insight the resulting data set provides into relationships of this diverse insect group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA