Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(22)2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37998374

RESUMEN

COVID-19 emerged as a worldwide pandemic in early 2020, and while the rapid development of safe and efficacious vaccines stands as an extraordinary achievement, the identification of effective therapeutics has been less successful. This process has been limited in part by a lack of human-relevant preclinical models compatible with therapeutic screening on the native virus, which requires a high-containment environment. Here, we report SARS-CoV-2 infection and robust viral replication in PREDICT96-ALI, a high-throughput, human primary cell-based organ-on-chip platform. We evaluate unique infection kinetic profiles across lung tissue from three human donors by immunofluorescence, RT-qPCR, and plaque assays over a 6-day infection period. Enabled by the 96 devices/plate throughput of PREDICT96-ALI, we also investigate the efficacy of Remdesivir and MPro61 in a proof-of-concept antiviral study. Both compounds exhibit an antiviral effect against SARS-CoV-2 in the platform. This demonstration of SARS-CoV-2 infection and antiviral dosing in a high-throughput organ-on-chip platform presents a critical capability for disease modeling and therapeutic screening applications in a human physiology-relevant in vitro system.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/farmacología , Pulmón , Replicación Viral
2.
Biochem Biophys Res Commun ; 686: 149155, 2023 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-37926046

RESUMEN

Prosthetic heart valves are associated with almost one quarter of cases of infective endocarditis, a rare but serious condition with a staggering 25 % mortality rate. Without the endothelium of native valves, the risk of infection is exacerbated for implanted devices exposed to blood. There are currently no physiologically relevant in vitro or animal models of prosthetic valve endocarditis (PVE). Of particular importance, Staphylococcus aureus, a common agent of PVE, has demonstrated enhanced binding to blood plasma proteins (e.g., fibrinogen) and exposed matrix under fluid shear stress (FSS). An in vitro platform that mimics the multiple physiological determinants for S. aureus adhesion to prosthetic valve materials would facilitate the discovery of new treatments to minimize PVE. To this end, we developed a first-of-its-kind microphysiological model of PVE to study the effects of several key variables (endothelial cell coverage, fibrinogen deposition, surface treatments, and FSS) on S. aureus adhesion to bioprosthetic material surfaces. Our model demonstrated that viable endothelial monolayers diminished the deposition of fibrinogen and that fibrinogen was required for the subsequent adhesion of S. aureus to the bioprosthetic surface model. Next, we examined factors that affected endothelial cell coverage, such as FSS and glutaraldehyde, a common chemical treatment for bioprosthetic materials. In particular, glutaraldehyde treatment obstructed endothelialization of otherwise biocompatible collagen-coated surfaces, further enabling fibrinogen and S. aureus deposition. In future work, this model could impact multiple research areas, such as screening candidate bioprosthetic valve materials and new surface treatments to prevent PVE and further understanding host-pathogen interactions.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Prótesis Valvulares Cardíacas , Animales , Endocarditis Bacteriana/microbiología , Staphylococcus aureus , Prótesis Valvulares Cardíacas/efectos adversos , Adhesión Bacteriana , Glutaral , Endocarditis/etiología , Fibrinógeno
3.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33613149

RESUMEN

Formation of capillary blood vasculature is a critical requirement for native as well as engineered organs and can be induced in vitro by co-culturing endothelial cells with fibroblasts. However, whether these fibroblasts are required only in the initial morphogenesis of endothelial cells or needed throughout is unknown, and the ability to remove these stromal cells after assembly could be useful for clinical translation. In this study, we introduce a technique termed CAMEO (Controlled Apoptosis in Multicellular Tissues for Engineered Organogenesis), whereby fibroblasts are selectively ablated on demand, and utilize it to probe the dispensability of fibroblasts in vascular morphogenesis. The presence of fibroblasts is shown to be necessary only during the first few days of endothelial cell morphogenesis, after which they can be ablated without significantly affecting the structural and functional features of the developed vasculature. Furthermore, we demonstrate the use of CAMEO to vascularize a construct containing primary human hepatocytes that improved tissue function. In conclusion, this study suggests that transient, initial support from fibroblasts is sufficient to drive vascular morphogenesis in engineered tissues, and this strategy of engineering-via-elimination may provide a new general approach for achieving desired functions and cell compositions in engineered organs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...