Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Am J Physiol Renal Physiol ; 326(5): F792-F801, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545651

RESUMEN

The kidney controls systemic inorganic phosphate (Pi) levels by adapting reabsorption to Pi intake. Renal Pi reabsorption is mostly mediated by sodium-phosphate cotransporters NaPi-IIa (SLC34A1) and NaPi-IIc (SLC34A3) that are tightly controlled by various hormones including parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). PTH and FGF23 rise in response to Pi intake and decrease NaPi-IIa and NaPi-IIc brush border membrane abundance enhancing phosphaturia. Phosphaturia and transporter regulation occurs even in the absence of PTH and FGF23 signaling. The calcium-sensing receptor (CaSR) regulates PTH and FGF23 secretion, and may also directly affect renal Pi handling. Here, we combined pharmacological and genetic approaches to examine the role of the CaSR in the acute phosphaturic response to Pi loading. Animals pretreated with the calcimimetic cinacalcet were hyperphosphatemic, had blunted PTH levels upon Pi administration, a reduced Pi-induced phosphaturia, and no Pi-induced NaPi-IIa downregulation. The calcilytic NPS-2143 exaggerated the PTH response to Pi loading but did not abolish Pi-induced downregulation of NaPi-IIa. In mice with a dominant inactivating mutation in the Casr (CasrBCH002), baseline NaPi-IIa expression was higher, whereas downregulation of transporter expression was blunted in double CasrBCH002/PTH knockout (KO) transgenic animals. Thus, in response to an acute Pi load, acute modulation of the CaSR affects the endocrine and renal response, whereas chronic genetic inactivation, displays only subtle differences in the downregulation of NaPi-IIa and NaPi-IIc renal expression. We did not find evidence that the CaSR impacts on the acute renal response to oral Pi loading beyond its role in regulating PTH secretion.NEW & NOTEWORTHY Consumption of phosphate-rich diets causes an adaptive response of the body leading to the urinary excretion of phosphate. The underlying mechanisms are still poorly understood. Here, we examined the role of the calcium-sensing receptor (CaSR) that senses both calcium and phosphate. We confirmed that the receptor increases the secretion of parathyroid hormone involved in stimulating urinary phosphate excretion. However, we did not find any evidence for a role of the receptor beyond this function.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Riñón , Hormona Paratiroidea , Fosfatos , Receptores Sensibles al Calcio , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc , Animales , Masculino , Ratones , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Riñón/metabolismo , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Hormona Paratiroidea/metabolismo , Fosfatos/metabolismo , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Reabsorción Renal/efectos de los fármacos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética
2.
Pflugers Arch ; 476(5): 833-845, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38386045

RESUMEN

The Calcium-sensing receptor (CaSR) senses extracellular calcium, regulates parathyroid hormone (PTH) secretion, and has additional functions in various organs related to systemic and local calcium and mineral homeostasis. Familial hypocalciuric hypercalcemia type I (FHH1) is caused by heterozygous loss-of-function mutations in the CaSR gene, and is characterized by the combination of hypercalcemia, hypocalciuria, normal to elevated PTH, and facultatively hypermagnesemia and mild bone mineralization defects. To date, only heterozygous Casr null mice have been available as model for FHH1. Here we present a novel mouse FHH1 model identified in a large ENU-screen that carries an c.2579 T > A (p.Ile859Asn) variant in the Casr gene (CasrBCH002 mice). In order to dissect direct effects of the genetic variant from PTH-dependent effects, we crossed CasrBCH002 mice with PTH deficient mice. Heterozygous CasrBCH002 mice were fertile, had normal growth and body weight, were hypercalcemic and hypermagnesemic with inappropriately normal PTH levels and urinary calcium excretion replicating some features of FHH1. Hypercalcemia and hypermagnesemia were independent from PTH and correlated with higher expression of claudin 16 and 19 in kidneys. Likewise, reduced expression of the renal TRPM6 channel in CasrBCH002 mice was not dependent on PTH. In bone, mutations in Casr rescued the bone phenotype observed in Pth null mice by increasing osteoclast numbers and improving the columnar pattern of chondrocytes in the growth zone. In summary, CasrBCH002 mice represent a new model to study FHH1 and our results indicate that only a part of the phenotype is driven by PTH.


Asunto(s)
Hipercalcemia , Hormona Paratiroidea , Receptores Sensibles al Calcio , Animales , Masculino , Ratones , Calcio/metabolismo , Modelos Animales de Enfermedad , Hipercalcemia/genética , Hipercalcemia/metabolismo , Hipercalcemia/congénito , Ratones Endogámicos C57BL , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/genética , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo
4.
J Biol Chem ; 300(1): 105480, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992803

RESUMEN

The bone-derived hormone fibroblast growth factor-23 (FGF23) has recently received much attention due to its association with chronic kidney disease and cardiovascular disease progression. Extracellular sodium concentration ([Na+]) plays a significant role in bone metabolism. Hyponatremia (lower serum [Na+]) has recently been shown to be independently associated with FGF23 levels in patients with chronic systolic heart failure. However, nothing is known about the direct impact of [Na+] on FGF23 production. Here, we show that an elevated [Na+] (+20 mM) suppressed FGF23 formation, whereas low [Na+] (-20 mM) increased FGF23 synthesis in the osteoblast-like cell lines UMR-106 and MC3T3-E1. Similar bidirectional changes in FGF23 abundance were observed when osmolality was altered by mannitol but not by urea, suggesting a role of tonicity in FGF23 formation. Moreover, these changes in FGF23 were inversely proportional to the expression of NFAT5 (nuclear factor of activated T cells-5), a transcription factor responsible for tonicity-mediated cellular adaptations. Furthermore, arginine vasopressin, which is often responsible for hyponatremia, did not affect FGF23 production. Next, we performed a comprehensive and unbiased RNA-seq analysis of UMR-106 cells exposed to low versus high [Na+], which revealed several novel genes involved in cellular adaptation to altered tonicity. Additional analysis of cells with Crisp-Cas9-mediated NFAT5 deletion indicated that NFAT5 controls numerous genes associated with FGF23 synthesis, thereby confirming its role in [Na+]-mediated FGF23 regulation. In line with these in vitro observations, we found that hyponatremia patients have higher FGF23 levels. Our results suggest that [Na+] is a critical regulator of FGF23 synthesis.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Sodio , Humanos , Factor-23 de Crecimiento de Fibroblastos/genética , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Hiponatremia/fisiopatología , Insuficiencia Renal Crónica/fisiopatología , Sodio/metabolismo , Sodio/farmacología , Línea Celular Tumoral , Línea Celular , Animales , Ratones , Ratones Endogámicos C57BL , Arginina Vasopresina/metabolismo , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Ratas
5.
Clin Kidney J ; 16(10): 1622-1633, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37779856

RESUMEN

Background: Hyperphosphatemia is associated with increased mortality and cardiovascular morbidity of end-stage kidney failure (ESKF) patients. Managing serum phosphate in ESKF patients is challenging and mostly based on limiting intestinal phosphate absorption with low phosphate diets and phosphate binders (PB). In a multi-centric, double-blinded, placebo-controlled study cohort of maintenance hemodialysis patients with hyperphosphatemia, we demonstrated the efficacy of nicotinamide modified release (NAMR) formulation treatment in addition to standard PB therapy in decreasing serum phosphate. Here we aimed to assess the relationship between phosphate, FGF23, inflammation and iron metabolism in this cohort. Methods: We measured the plasma concentrations of intact fibroblast growth factor 23 (iFGF23) and selected proinflammatory cytokines at baseline and Week 12 after initiating treatment. Results: We observed a strong correlation between iFGF23 and cFGF23 (C-terminal fragment plus iFGF23). We identified iFGF23 as a better predictor of changes in serum phosphate induced by NAMR and PB treatment compared with cFGF23. Recursive partitioning revealed at baseline and Week 12, that iFGF23 and cFGF23 together with T50 propensity were the most important predictors of serum phosphate, whereas intact parathyroid hormone (iPTH) played a minor role in this model. Furthermore, we found serum phosphate and iPTH as the best predictors of iFGF23 and cFGF23. Sex, age, body mass index, and markers of inflammation and iron metabolism had only a minor impact in predicting FGF23. Conclusion: Lowering serum phosphate in ESKF patients may depend highly on iFGF23 which is correlated to cFGF23 levels. Serum phosphate was the most important predictor of plasma FGF23 in this ESKF cohort.

6.
J Endocrinol ; 259(1)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439399

RESUMEN

Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone. X-linked hypophosphatemia (XLH) is the most prevalent inherited phosphate wasting disorder due to mutations in the PHEX gene, which cause elevated circulating FGF23 levels. Clinically, it is characterized by growth impairment and defective mineralization of bones and teeth. Treatment of XLH is challenging. Since 2018, neutralizing antibodies against FGF23 have dramatically improved the therapy of XLH patients, although not all patients fully respond to the treatment, and it is very costly. C-terminal fragments of FGF23 have recently emerged as blockers of intact FGF23 signaling. Here, we analyzed the effect on growth and bone of a short 26 residues long C-terminal FGF23 (cFGF23) fragment and two N-acetylated and C-amidated cFGF23 peptides using young XLH mice (Phex C733RMhda mice). Although no major changes in blood parameters were observed after 7 days of treatment with these peptides, bone length and growth plate structure improved. The modified peptides accelerated the growth rate probably by improving growth plate structure and dynamics. The processes of chondrocyte proliferation, death, hypertrophy, and the cartilaginous composition in the growth plate were partially improved in young treated XLH mice. In conclusion, these findings contribute to understand the role of FGF23 signaling in growth plate metabolism and show that this may occur despite continuous hypophosphatemia.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Placa de Crecimiento , Animales , Ratones , Huesos/metabolismo , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Placa de Crecimiento/metabolismo , Fosfatos
7.
Pflugers Arch ; 474(8): 935-947, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35511366

RESUMEN

Phosphate is essential in living organisms and its blood levels are regulated by a complex network involving the kidneys, intestine, parathyroid glands, and the skeleton. The crosstalk between these organs is executed primarily by three hormones, calcitriol, parathyroid hormone, and fibroblast growth factor 23. Largely due to a higher intake of ultraprocessed foods, dietary phosphate intake has increased in the last decades. The average intake is now about twice the recommended dietary allowance. Studies investigating the side effect of chronic high dietary phosphate intake suffer from incomplete dietary phosphate assessment and, therefore, often make data interpretation difficult. Renal excretion is quickly adapted to acute and chronic phosphate intake. However, at the high ends of dietary intake, renal adaptation, even in pre-existing normal kidney function, apparently is not perfect. Experimental intervention studies suggest that chronic excess of dietary phosphate can result in sustained higher blood phosphate leading to hyperphosphatemia. Evidence exists that the price of the homeostatic response (phosphaturia in response to phosphate loading/hyperphosphatemia) is an increased risk for declining kidney function, partly due by intraluminal/tubular calcium phosphate particles that provoke renal inflammation. High dietary phosphate intake and hyperphosphatemia are progression factors for declining kidney function and are associated with higher cardiovascular disease and mortality risk. This is best established for pre-existing chronic kidney disease, but epidemiological and experimental data strongly suggest that this holds true for subjects with normal renal function as well. Here, we review the latest advances in phosphate intake and kidney function decline.


Asunto(s)
Hiperfosfatemia , Insuficiencia Renal Crónica , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Hiperfosfatemia/complicaciones , Hiperfosfatemia/tratamiento farmacológico , Riñón/metabolismo , Fosfatos/metabolismo , Insuficiencia Renal Crónica/metabolismo
8.
Mol Nutr Food Res ; 66(9): e2100949, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35194921

RESUMEN

SCOPE: In the last decades, dietary phosphate intake has increased due to a higher consumption of ultraprocessed food. This higher intake has an impact on body composition and health state. Recently, this study finds that a high chronic phosphate diet leads to no major renal alterations, but negatively affects parameters of bone health probably due to the chronic acid load. Here the effect of high phosphate consumption on parameters of energy metabolism is assessed. METHODS AND RESULTS: Healthy mature adult mice are fed for 1 year or 4 months with either a standard (0.6 % w/w) or a high phosphate (1.2 % w/w) diet. Males and females of two different genetic backgrounds are investigated. Mice feed the high phosphate diet show an attenuated body-weight gain, lower respiratory exchange ratio, decreased body fat mass, and increased lean-to-fat mass ratio. Moreover, the high phosphate diet leads to fasting hypoglycemia with no differences in the glucose response to an oral glucose tolerance test. Triglycerides and cholesterol in blood are similar independently of dietary phosphate content. However, 1-methylhistidine is lower in animals feed a chronic high phosphate intake. CONCLUSIONS: High phosphate diet attenuates body weight gain, but induces hypoglycemia and may alter muscle homeostasis.


Asunto(s)
Composición Corporal , Nutrientes , Animales , Dieta , Grasas de la Dieta/farmacología , Ingestión de Alimentos , Femenino , Masculino , Ratones , Fosfatos/farmacología
9.
Kidney Blood Press Res ; 46(6): 714-722, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34515136

RESUMEN

INTRODUCTION: Phosphate homeostasis is regulated by a complex network involving the parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and calcitriol acting on several organs including the kidney, intestine, bone, and parathyroid gland. Previously, we showed that activation of the Janus kinase 1 (Jak1)-signal transducer and activator of transcription 3 (Stat3) signaling pathway leads to altered mineral metabolism with higher FGF23 levels, lower PTH, and higher calcitriol levels. Here, we investigated if there are sex differences in the role of Jak1/Stat3 signaling pathway on phosphate metabolism and if this pathway is sensitive to extracellular phosphate alterations. METHODS: We used a mouse model (Jak1S645P+/-) that resembles a constitutive activating mutation of the Jak1/Stat3 signaling pathway in humans and analyzed the impact of sex on mineral metabolism parameters. Furthermore, we challenged Jak1S645P+/- male and female mice with a high (1.2% w/w) and low (0.1% w/w) phosphate diet and a diet with phosphate with organic origin with lower bioavailability. RESULTS: Female mice, as male mice, showed higher intact FGF23 levels but no phosphaturia, and higher calcitriol and lower PTH levels in plasma. A phosphate challenge did not alter the effect of Jak1/Stat3 activation on phosphate metabolism for both genders. However, under a low phosphate diet or a diet with lower phosphate availability, the animals showed a tendency to develop hypophosphatemia. Moreover, male and female mice showed similar phosphate metabolism parameters. The only exception was higher PTH levels in male mice than those in females. DISCUSSION/CONCLUSION: Sex and extracellular phosphate levels do not affect the impact of Jak1/Stat3 activation on phosphate metabolism.


Asunto(s)
Janus Quinasa 1/metabolismo , Fosfatos/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Activación Enzimática , Espacio Extracelular/metabolismo , Femenino , Masculino , Ratones , Caracteres Sexuales
10.
FASEB J ; 35(7): e21721, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118090

RESUMEN

Mineral homeostasis is regulated by a complex network involving endocrine actions by calcitriol, parathyroid hormone (PTH), and FGF23 on several organs including kidney, intestine, and bone. Alterations of mineral homeostasis are found in chronic kidney disease and other systemic disorders. The interplay between the immune system and the skeletal system is not fully understood, but cytokines play a major role in modulating calcitriol production and function. One of the main cellular signaling pathways mediating cytokine function is the Janus kinase (JAK)--signal transducer and activator of transcription (STAT) pathway. Here, we used a mouse model (Jak1S645P+/- ) that resembles a constitutive activating mutation of the Jak1/Stat3 signaling pathway in humans, and shows altered mineral metabolism, with higher fibroblast growth factor 23 (FGF23) levels, lower PTH levels, and higher calcitriol levels. The higher calcitriol levels are probably due to extrarenal calcitriol production. Furthermore, systemic Jak1/Stat3 activation led to growth impairment and skeletal alterations. The growth plate in long bones showed decreased chondrocyte proliferation rates and reduced height of terminal chondrocytes. Furthermore, we demonstrate that Jak1 is also involved in bone remodeling early in life. Jak1S645P+/- animals have decreased bone and cortical volume, imbalanced bone remodeling, reduced MAP kinase signaling, and local inflammation. In conclusion, Jak1 plays a major role in bone health probably both, directly and systemically by regulating mineral homeostasis. Understanding the role of this signaling pathway will contribute to a better knowledge in bone growth and in mineral physiology, and to the development of selective Jak inhibitors as osteoprotective agents.


Asunto(s)
Huesos/metabolismo , Huesos/fisiología , Calcitriol/metabolismo , Trastornos del Crecimiento/metabolismo , Janus Quinasa 1/metabolismo , Transducción de Señal/fisiología , Animales , Remodelación Ósea/fisiología , Proliferación Celular/fisiología , Condrocitos/metabolismo , Condrocitos/fisiología , Citocinas/metabolismo , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Placa de Crecimiento/metabolismo , Placa de Crecimiento/fisiología , Homeostasis/fisiología , Humanos , Inflamación/metabolismo , Riñón/metabolismo , Riñón/fisiología , Masculino , Ratones , Ratones Endogámicos C3H , Mutación/genética , Hormona Paratiroidea/metabolismo , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA