Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(8): e1012355, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173067

RESUMEN

A core challenge for the brain is to process information across various timescales. This could be achieved by a hierarchical organization of temporal processing through intrinsic mechanisms (e.g., recurrent coupling or adaptation), but recent evidence from spike recordings of the rodent visual system seems to conflict with this hypothesis. Here, we used an optimized information-theoretic and classical autocorrelation analysis to show that information- and correlation timescales of spiking activity increase along the anatomical hierarchy of the mouse visual system under visual stimulation, while information-theoretic predictability decreases. Moreover, intrinsic timescales for spontaneous activity displayed a similar hierarchy, whereas the hierarchy of predictability was stimulus-dependent. We could reproduce these observations in a basic recurrent network model with correlated sensory input. Our findings suggest that the rodent visual system employs intrinsic mechanisms to achieve longer integration for higher cortical areas, while simultaneously reducing predictability for an efficient neural code.

2.
Trends Neurosci ; 46(1): 45-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577388

RESUMEN

Top-down feedback in cortex is critical for guiding sensory processing, which has prominently been formalized in the theory of hierarchical predictive coding (hPC). However, experimental evidence for error units, which are central to the theory, is inconclusive and it remains unclear how hPC can be implemented with spiking neurons. To address this, we connect hPC to existing work on efficient coding in balanced networks with lateral inhibition and predictive computation at apical dendrites. Together, this work points to an efficient implementation of hPC with spiking neurons, where prediction errors are computed not in separate units, but locally in dendritic compartments. We then discuss the correspondence of this model to experimentally observed connectivity patterns, plasticity, and dynamics in cortex.


Asunto(s)
Dendritas , Neuronas , Humanos , Neuronas/fisiología , Corteza Cerebral
3.
Neural Comput ; 35(1): 27-37, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36283047

RESUMEN

How are visuomotor mismatch responses in primary visual cortex embedded into cortical processing? We here show that mismatch responses can be understood as the result of a cooperation of motor and visual areas to jointly explain optic flow. This cooperation requires that optic flow is not explained redundantly by both areas, meaning that optic flow inputs to V1 that are predictable from motor neurons should be canceled (i.e., explained away). As a result, neurons in V1 represent only external causes of optic flow, which could allow the animal to easily detect movements that are independent of its own locomotion. We implement the proposed model in a spiking neural network, where coding errors are computed in dendrites and synaptic weights are learned with voltage-dependent plasticity rules. We find that both positive and negative mismatch responses arise, providing an alternative to the prevailing idea that visuomotor mismatch responses are linked to dedicated neurons for error computation. These results also provide a new perspective on several other recent observations of cross-modal neural interactions in cortex.


Asunto(s)
Corteza Visual , Animales , Corteza Visual/fisiología , Neuronas/fisiología , Redes Neurales de la Computación , Movimiento/fisiología , Estimulación Luminosa
4.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34876505

RESUMEN

How can neural networks learn to efficiently represent complex and high-dimensional inputs via local plasticity mechanisms? Classical models of representation learning assume that feedforward weights are learned via pairwise Hebbian-like plasticity. Here, we show that pairwise Hebbian-like plasticity works only under unrealistic requirements on neural dynamics and input statistics. To overcome these limitations, we derive from first principles a learning scheme based on voltage-dependent synaptic plasticity rules. Here, recurrent connections learn to locally balance feedforward input in individual dendritic compartments and thereby can modulate synaptic plasticity to learn efficient representations. We demonstrate in simulations that this learning scheme works robustly even for complex high-dimensional inputs and with inhibitory transmission delays, where Hebbian-like plasticity fails. Our results draw a direct connection between dendritic excitatory-inhibitory balance and voltage-dependent synaptic plasticity as observed in vivo and suggest that both are crucial for representation learning.


Asunto(s)
Simulación por Computador , Aprendizaje/fisiología , Modelos Biológicos , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales
5.
PLoS Comput Biol ; 17(6): e1008927, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061837

RESUMEN

Information processing can leave distinct footprints on the statistics of neural spiking. For example, efficient coding minimizes the statistical dependencies on the spiking history, while temporal integration of information may require the maintenance of information over different timescales. To investigate these footprints, we developed a novel approach to quantify history dependence within the spiking of a single neuron, using the mutual information between the entire past and current spiking. This measure captures how much past information is necessary to predict current spiking. In contrast, classical time-lagged measures of temporal dependence like the autocorrelation capture how long-potentially redundant-past information can still be read out. Strikingly, we find for model neurons that our method disentangles the strength and timescale of history dependence, whereas the two are mixed in classical approaches. When applying the method to experimental data, which are necessarily of limited size, a reliable estimation of mutual information is only possible for a coarse temporal binning of past spiking, a so-called past embedding. To still account for the vastly different spiking statistics and potentially long history dependence of living neurons, we developed an embedding-optimization approach that does not only vary the number and size, but also an exponential stretching of past bins. For extra-cellular spike recordings, we found that the strength and timescale of history dependence indeed can vary independently across experimental preparations. While hippocampus indicated strong and long history dependence, in visual cortex it was weak and short, while in vitro the history dependence was strong but short. This work enables an information-theoretic characterization of history dependence in recorded spike trains, which captures a footprint of information processing that is beyond time-lagged measures of temporal dependence. To facilitate the application of the method, we provide practical guidelines and a toolbox.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/fisiología , Corteza Visual/fisiología , Simulación por Computador , Hipocampo/citología , Humanos , Modelos Neurológicos , Neuronas/fisiología , Corteza Visual/citología
6.
Front Syst Neurosci ; 12: 55, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459567

RESUMEN

Neural circuits are able to perform computations under very diverse conditions and requirements. The required computations impose clear constraints on their fine-tuning: a rapid and maximally informative response to stimuli in general requires decorrelated baseline neural activity. Such network dynamics is known as asynchronous-irregular. In contrast, spatio-temporal integration of information requires maintenance and transfer of stimulus information over extended time periods. This can be realized at criticality, a phase transition where correlations, sensitivity and integration time diverge. Being able to flexibly switch, or even combine the above properties in a task-dependent manner would present a clear functional advantage. We propose that cortex operates in a "reverberating regime" because it is particularly favorable for ready adaptation of computational properties to context and task. This reverberating regime enables cortical networks to interpolate between the asynchronous-irregular and the critical state by small changes in effective synaptic strength or excitation-inhibition ratio. These changes directly adapt computational properties, including sensitivity, amplification, integration time and correlation length within the local network. We review recent converging evidence that cortex in vivo operates in the reverberating regime, and that various cortical areas have adapted their integration times to processing requirements. In addition, we propose that neuromodulation enables a fine-tuning of the network, so that local circuits can either decorrelate or integrate, and quench or maintain their input depending on task. We argue that this task-dependent tuning, which we call "dynamic adaptive computation," presents a central organization principle of cortical networks and discuss first experimental evidence.

7.
PLoS Comput Biol ; 13(6): e1005511, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28570661

RESUMEN

The disruption of coupling between brain areas has been suggested as the mechanism underlying loss of consciousness in anesthesia. This hypothesis has been tested previously by measuring the information transfer between brain areas, and by taking reduced information transfer as a proxy for decoupling. Yet, information transfer is a function of the amount of information available in the information source-such that transfer decreases even for unchanged coupling when less source information is available. Therefore, we reconsidered past interpretations of reduced information transfer as a sign of decoupling, and asked whether impaired local information processing leads to a loss of information transfer. An important prediction of this alternative hypothesis is that changes in locally available information (signal entropy) should be at least as pronounced as changes in information transfer. We tested this prediction by recording local field potentials in two ferrets after administration of isoflurane in concentrations of 0.0%, 0.5%, and 1.0%. We found strong decreases in the source entropy under isoflurane in area V1 and the prefrontal cortex (PFC)-as predicted by our alternative hypothesis. The decrease in source entropy was stronger in PFC compared to V1. Information transfer between V1 and PFC was reduced bidirectionally, but with a stronger decrease from PFC to V1. This links the stronger decrease in information transfer to the stronger decrease in source entropy-suggesting reduced source entropy reduces information transfer. This conclusion fits the observation that the synaptic targets of isoflurane are located in local cortical circuits rather than on the synapses formed by interareal axonal projections. Thus, changes in information transfer under isoflurane seem to be a consequence of changes in local processing more than of decoupling between brain areas. We suggest that source entropy changes must be considered whenever interpreting changes in information transfer as decoupling.


Asunto(s)
Anestésicos por Inhalación/farmacología , Estado de Conciencia , Isoflurano/farmacología , Procesos Mentales/efectos de los fármacos , Inconsciencia , Anestesia , Animales , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Femenino , Hurones , Corteza Prefrontal/efectos de los fármacos , Inconsciencia/inducido químicamente , Inconsciencia/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA