Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74
2.
Brain ; 146(1): 266-277, 2023 01 05.
Article En | MEDLINE | ID: mdl-35136957

Two clinical phenotypes characterize the onset of amyotrophic lateral sclerosis (ALS): the spinal variant, with symptoms beginning in the limbs, and the bulbar variant, affecting firstly speech and swallowing. The two variants show some distinct features in the histopathology, localization and prognosis, but to which extent they really differ clinically and pathologically remains to be clarified. Recent neuropathological and neuroimaging studies have suggested a broader spreading of the neurodegenerative process in ALS, extending beyond the motor areas, toward other cortical and deep grey matter regions, many of which are involved in visual processing and saccadic control. Indeed, a wide range of eye movement deficits have been reported in ALS, but they have never been used to distinguish the two ALS variants. Since quantifying eye movements is a very sensitive and specific method for the study of brain networks, we compared different saccadic and visual search behaviours across spinal ALS patients (n = 12), bulbar ALS patients (n = 6) and healthy control subjects (n = 13), along with cognitive and MRI measures, with the aim to define more accurately the two patients subgroups and possibly clarify a different underlying neural impairment. We found separate profiles of visually-guided saccades between spinal (short saccades) and bulbar (slow saccades) ALS, which could result from the pathologic involvement of different pathways. We suggest an early involvement of the parieto-collicular-cerebellar network in spinal ALS and the fronto-brainstem circuit in bulbar ALS. Overall, our data confirm the diagnostic value of the eye movements analysis in ALS and add new insight on the involved neural networks.


Amyotrophic Lateral Sclerosis , Motor Cortex , Humans , Amyotrophic Lateral Sclerosis/pathology , Saccades , Brain/diagnostic imaging , Brain/pathology , Brain Stem
3.
Front Integr Neurosci ; 17: 1275794, 2023.
Article En | MEDLINE | ID: mdl-38390227

Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of neurodegenerative disorders affecting primarily the cerebellum and/or its afferent tracts, often accompanied by damage of other neurological or extra-neurological systems. Due to the overlap of clinical presentation among ARCAs and the variety of hereditary, acquired, and reversible etiologies that can determine cerebellar dysfunction, the differential diagnosis is challenging, but also urgent considering the ongoing development of promising target therapies. The examination of afferent and efferent visual system may provide neurophysiological and structural information related to cerebellar dysfunction and neurodegeneration thus allowing a possible diagnostic classification approach according to ocular features. While optic coherence tomography (OCT) is applied for the parametrization of the optic nerve and macular area, the eye movements analysis relies on a wide range of eye-tracker devices and the application of machine-learning techniques. We discuss the results of clinical and eye-tracking oculomotor examination, the OCT findings and some advancing of computer science in ARCAs thus providing evidence sustaining the identification of robust eye parameters as possible markers of ARCAs.

4.
Neurol Sci ; 43(11): 6381-6387, 2022 Nov.
Article En | MEDLINE | ID: mdl-35930182

PURPOSE: Cerebral amyloid angiopathy-related inflammation (CAA-ri) is a rare potentially reversible encephalopathy associated with an autoimmune process against proteins deposited in the walls of cortical and leptomeningeal brain vessels. Definite diagnosis requires histopathological features of vascular inflammation and amyloid deposition from brain biopsy. Clinical-neuroradiological criteria have been recently introduced and validated to reduce the need for biopsy. The purpose of this paper is to report a historical retrospective review of clinical-neuroradiological follow-up of two patients with probable CAA-ri and five patients with a reasonably probable suspect of CAA-ri (4 females, 3 males, patient's age at admission: 66-79 years) seen at our institution between 2007 and 2021, focusing on clinical and neuroradiological awareness to this entity and variable response to immunotherapy. MATERIALS AND METHODS: Clinical features at presentation included subacute to acute confusion (6/7), seizures (4/7), cognitive impairment (5/7), and focal neurological signs (3/7). Neuroradiology included braincomputed tomography followed by magnetic resonance imaging. Infectious diseases and autoimmune workups were then performed. RESULTS: CSF analysis was performed in two patients. Cerebral angiography was performed in two patients, to rule out vascular malformations. Hemorrhagic posterior reversible encephalopathy syndrome has been suspected in two patients. Four patients underwent immunotherapy with corticosteroids followed by reduction of brain dysfunctions. Three patients did not undergo immunotherapy but underwent clinical and/or neuroradiological remission. CONCLUSIONS: Patients with CAA-ri present a rare steroid-responsive acute to subacute brain dysfunction. Thus, it has to be known and recognized both clinically and neuroradiologically. Spontaneous clinical and/or neuroradiological improvement is possible in patients with mild symptoms.


Cerebral Amyloid Angiopathy , Posterior Leukoencephalopathy Syndrome , Male , Female , Humans , Aged , Posterior Leukoencephalopathy Syndrome/complications , Follow-Up Studies , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/therapy , Inflammation/diagnostic imaging , Inflammation/therapy , Inflammation/complications , Magnetic Resonance Imaging/methods
5.
Neurol Sci ; 43(4): 2849-2852, 2022 Apr.
Article En | MEDLINE | ID: mdl-35066644

INTRODUCTION: Spastic paraplegia type 11 (SPG11) is the most frequent autosomal recessive HSP. Studies on SPG11 patients' fibroblasts, post-mortem brains, and mouse models revealed endolysosomal system dysfunction and lipid accumulation, especially gangliosides. We report a patient with early clinical findings mimicking a GM2-gangliosidosis. METHODS: A clinical, biochemical, and metabolic characterization was performed. Electron microscopy analysis was completed on rectal mucosa and skin biopsy specimens. A NGS panel of genes associated to neuronal ceroid lipofuscinosis and HSP was analyzed. RESULTS: The patient presented with worsening walking difficulty and psychomotor slowdown since childhood; to exclude a neurometabolic storage disease, skin and rectal biopsies were performed: enteric neurons showed lipofuscin-like intracellular inclusions, thus suggesting a possible GM2-gangliosidosis. However, further analysis did not allow to confirm such hypothesis. In adulthood we detected flaccid paraplegia, nystagmus, axonal motor neuropathy, carpus callosum atrophy, and colon atony. Surprisingly, the NGS panel detected two already reported SPG11 mutations in compound heterozygosity. CONCLUSIONS: We describe for the first time pathological hallmarks of SPG11 in enteric neuron from a rectal mucosa biopsy. The report illustrates the possible overlap between SPG11 and GM2-gangliosidosis, especially in the first disease phases and helps to improve our knowledge about SPG11 physiopathology.


Gangliosidoses , Spastic Paraplegia, Hereditary , Adult , Animals , Child , Humans , Mice , Mutation , Proteins/genetics , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics
6.
Front Neurol ; 11: 577362, 2020.
Article En | MEDLINE | ID: mdl-33224092

Patients with Alzheimer's disease (AD) and Parkinson's disease (PD) develop a progressive decline of visual function. This condition aggravates overall cognitive and motor abilities, is a risk factor for developing hallucinations, and can have a significant influence on general quality of life. Visual problems are common complaints of patients with PD and AD in the early stages of the disease, but they also occur during normal aging, making it difficult to differentiate between normal and pathological conditions. In this respect, their real incidence has remained largely underestimated, and no rehabilitative approaches have been standardized. With the aim to increase awareness for ocular and visual disorders, we collected the main neurophthalmologic and orthoptic parameters, including optical coherence tomography (OCT), in six patients with a diagnosis of PD, six patients with a diagnosis of early AD, and eight control subjects in an easily assessable outpatient setting. We also evaluated the patient's ability to recognize changes in facial expression. Our study demonstrates that visual problems, including blurred vision, diplopia, reading discomfort, photophobia, and glare, are commonly reported in patients with PD and AD. Moreover, abnormal eye alignment and vergence insufficiency were documented in all patients during examination. Despite the small size of the sample, we demonstrated greater ganglion cell and retinal nerve fibers layer (RNFL) damage and a defect of facial emotion recognition in AD/PD patients with respect to a comparable group of normal elderly persons, with peculiarities depending upon the disease. Ocular defects or visual discomfort could be correctly evaluated in these patients and possibly corrected by means of lens, orthoptic exercises, and visual rehabilitation. Such a practical approach may help to ameliorate motor autonomy, reading ability, and may also reduce the risk of falls, with a positive impact in daily living activities.

7.
Sci Rep ; 10(1): 16335, 2020 10 01.
Article En | MEDLINE | ID: mdl-33005008

Visual attention refers to the human brain's ability to select relevant sensory information for preferential processing, improving performance in visual and cognitive tasks. It proceeds in two phases. One in which visual feature maps are acquired and processed in parallel. Another where the information from these maps is merged in order to select a single location to be attended for further and more complex computations and reasoning. Its computational description is challenging, especially if the temporal dynamics of the process are taken into account. Numerous methods to estimate saliency have been proposed in the last 3 decades. They achieve almost perfect performance in estimating saliency at the pixel level, but the way they generate shifts in visual attention fully depends on winner-take-all (WTA) circuitry. WTA is implemented by the biological hardware in order to select a location with maximum saliency, towards which to direct overt attention. In this paper we propose a gravitational model to describe the attentional shifts. Every single feature acts as an attractor and the shifts are the result of the joint effects of the attractors. In the current framework, the assumption of a single, centralized saliency map is no longer necessary, though still plausible. Quantitative results on two large image datasets show that this model predicts shifts more accurately than winner-take-all.


Attention/physiology , Models, Neurological , Visual Perception/physiology , Eye Movements/physiology , Humans , Photic Stimulation
8.
Neurol Sci ; 41(7): 1719-1734, 2020 Jul.
Article En | MEDLINE | ID: mdl-32130555

Oculomotor abnormalities are common findings in spinocerebellar ataxias (SCAs), a clinically heterogeneous group of neurodegenerative disorders with an autosomal dominant pattern of inheritance. Usually, cerebellar impairment accounts for most of the eye movement changes encountered; as the disease progresses, the involvement of extracerebellar structures typically seen in later stages may modify the oculomotor progression. However, ocular movement changes are rarely specific. In this regard, some important exceptions include the prominent slowing of horizontal eye movements in SCA2 and, to a lesser extent, in SCA3, SCA4, and SCA28, or the executive deficit in SCA2 and SCA17. Here, we report the eye movement abnormalities and neurological pictures of SCAs through a review of the literature. Genetic and neuropathological/neuroimaging aspects are also briefly discussed. Overall, the findings reported indicate that oculomotor analysis could be of help in differential diagnosis among SCAs and contribute to clarify the role of brain structures, particularly the cerebellum, in oculomotor control.


Ocular Motility Disorders , Spinocerebellar Ataxias , Brain , Cerebellum/diagnostic imaging , Eye Movements , Humans , Ocular Motility Disorders/diagnosis , Ocular Motility Disorders/genetics , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/genetics
9.
Prog Brain Res ; 249: 125-139, 2019.
Article En | MEDLINE | ID: mdl-31325973

The cerebellum adapts motor responses by controlling the gain of a movement, preserving its accuracy and by learning from endpoint errors. Adaptive behavior likely acts not only in the motor but also in the sensory, behavioral, and cognitive domains, thus supporting a role of cerebellum in monitoring complex brain performances. Here, we analyzed the relationship between saccade latency, duration and endpoint error of antisaccades in a group of 10 idiopathic cerebellar atrophy (ICA) patients compared to controls. The latency distribution was decomposed in a decision time and a residual time. Both groups showed a trade-off between duration and decision time, with a peak of entropy within the range of this trade-off where the information flow was maximized. In cerebellar patients, greater reductions of duration as the time of decision increased, were associated with a lower probability for a saccade to fall near the target, with a constant low entropy outside the optimal time window. We suggest a modulation of saccade duration, depending on the latency-related decision time (accumulation of sensory and motor evidences in favor of a goal-directed movement), normally adopted to perform efficient trajectories in goal-directed saccades. This process is impaired in cerebellar patients suggesting a role for the cerebellum in monitoring voluntary motor performance by controlling the movement onset until the ambiguity of planning is resolved.


Adaptation, Physiological/physiology , Cerebellum/physiology , Motor Activity/physiology , Ocular Motility Disorders/physiopathology , Saccades/physiology , Spinocerebellar Degenerations/physiopathology , Adult , Aged , Entropy , Eye Movement Measurements , Female , Humans , Male , Middle Aged , Ocular Motility Disorders/etiology , Spinocerebellar Degenerations/complications , Young Adult
10.
Prog Brain Res ; 249: 183-188, 2019.
Article En | MEDLINE | ID: mdl-31325977

Eye movements are an essential part of human vision as they drive the fovea and, consequently, selective visual attention toward a region of interest in space. Free visual exploration is an inherently stochastic process depending on image statistics but also individual variability of cognitive and attentive state. We propose a theory of free visual exploration entirely formulated within the framework of physics and based on the general Principle of Least Action. Within this framework, differential laws describing eye movements emerge in accordance with bottom-up functional principles. In addition, we integrate top-down semantic information captured by deep convolutional neural networks pre-trained for the classification of common objects. To stress the model, we used a wide collection of images including basic features as well as high level semantic content. Results in a task of saliency prediction validate the theory.


Attention/physiology , Eye Movements/physiology , Models, Theoretical , Neural Networks, Computer , Visual Perception/physiology , Humans
11.
Front Neurosci ; 13: 407, 2019.
Article En | MEDLINE | ID: mdl-31114474

Pupil size fluctuations during stationary scotopic conditions may convey information about the cortical state activity at rest. An important link between neuronal network state modulation and pupil fluctuations is the cholinergic and noradrenergic neuromodulatory tone, which is active at cortical level and in the peripheral terminals of the autonomic nervous system (ANS). This work aimed at studying the low- and high-frequency coupled oscillators in the autonomic spectrum (0-0.45 Hz) which, reportedly, drive the spontaneous pupillary fluctuations. To assess the interaction between the oscillators, we focused on the patterns of their trajectories in the phase-space. Firstly, the frequency spectrum of the pupil signal was determined by empirical mode decomposition. Secondly, cross-recurrence quantification analysis was used to unfold the non-linear dynamics. The global and local patterns of recurrence of the trajectories were estimated by two parameters: determinism and entropy. An elliptic region in the entropy-determinism plane (95% prediction area) yielded health-related values of entropy and determinism. We hypothesize that the data points inside the ellipse would likely represent balanced activity in the ANS. Interestingly, the Epworth Sleepiness Scale scores scaled up along with the entropy and determinism parameters. Although other non-linear methods like Short Time Fourier Transform and wavelets are usually applied for analyzing the pupillary oscillations, they rely on strong assumptions like the stationarity of the signal or the a priori knowledge of the shape of the single basis wave. Instead, the cross-recurrence analysis of the non-linear dynamics of the pupil size oscillations is an adaptable diagnostic tool for identifying the different weight of the autonomic nervous system components in the modulation of pupil size changes at rest in non-luminance conditions.

13.
Mov Disord ; 33(12): 1844-1856, 2018 12.
Article En | MEDLINE | ID: mdl-30485556

Inborn errors of metabolism in adults are still largely unexplored. Despite the fact that adult-onset phenotypes have been known for many years, little attention is given to these disorders in neurological practice. The adult-onset presentation differs from childhood-onset phenotypes, often leading to considerable diagnostic delay. The identification of these patients at the earliest stage of disease is important, given that early treatment may prevent or lessen further brain damage. Neurological and psychiatric symptoms occur more frequently in adult forms. Abnormalities of eye movements are also common and can be the presenting sign. Eye movement disorders can be classified as central or peripheral. Central forms are frequently observed in lysosomal storage disorders, whereas peripheral forms are a key feature of mitochondrial disease. Furthermore, oculogyric crisis is an important feature in disorders affecting dopamine syntheses or transport. Ocular motor disorders are often not reported by the patient, and abnormalities can be easily overlooked in a general examination. In adults with unexplained psychiatric and neurological symptoms, a special focus on examination of eye movements can serve as a relatively simple clinical tool to detect a metabolic disorder. Eye movements can be easily quantified and analyzed with video-oculography, making them a valuable biomarker for following the natural course of disease or the response to therapies. Here, we review, for the first time, eye movement disorders that can occur in inborn errors of metabolism, with a focus on late-onset forms. We provide a step-by-step overview that will help clinicians to examine and interpret eye movement disorders. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Age of Onset , Delayed Diagnosis , Metabolism, Inborn Errors/physiopathology , Movement Disorders/diagnosis , Ocular Motility Disorders/physiopathology , Eye Movements/physiology , Humans , Metabolism, Inborn Errors/diagnosis , Movement Disorders/complications , Movement Disorders/therapy , Ocular Motility Disorders/diagnosis
15.
Front Neurol ; 9: 274, 2018.
Article En | MEDLINE | ID: mdl-29740392

OBJECTIVE: Increasing evidence suggests a cerebellar contribution to modulate cognitive aspects of motor behavior and executive functions. Supporting findings come from studies on patients with neurodegenerative diseases, in which however, given the extent of the disease, the specific role of the cerebellum, could not be clearly isolated. Anti-saccades are considered a sensitive tool to test executive functions. The anti-saccade underlying neural network, consisting of different cortical areas and their downstream connections including the lateral cerebellum, has been largely clarified. To separate the role of the cerebellum with respect to other cortical structures in executive control, we compared the anti-saccade performances in two distinct cohorts of patients with cerebellar disorders (with and without cerebral cortical involvement). METHODS: Eye movements during the execution of anti-saccades were recorded in 12 patients with spinocerebellar ataxia type 2 (a cortical-subcortical neurodegenerative disease), 10 patients with late onset cerebellar ataxia (an isolated cerebellar atrophy), and 34 matched controls. RESULTS: In the anti-saccade task, besides dynamic changes already demonstrated in the pro-saccades of these patients, we found in both groups of cerebellar patients prolonged latency with larger variability than normal and increased directional error rate. Errors, however, were corrected by cerebellar patients as frequently as normal. No significant differences were found in patients with and without cortical involvement. CONCLUSION: Our results indicate, in a large cohort of cerebellar patients, that the cerebellum plays a critical role in the regulation of executive motor control not only, as well known, by controlling the end of a movement, but also modulating its initiation and reducing reflexive responses that would perturb voluntary actions.

17.
Front Neurol ; 8: 596, 2017.
Article En | MEDLINE | ID: mdl-29170652

OBJECTIVE: To investigate cerebellar dysfunctions and quantitatively characterize specific oculomotor changes in ataxia-telangiectasia-like disorder (ATLD), a rare autosomal recessive disease caused by mutations in the MRE11 gene. Additionally, to further elucidate the pathophysiology of cerebellar damage in the ataxia-telangiectasia (AT) spectrum disorders. METHODS: Saccade dynamics, metrics, and visual fixation deficits were investigated in two Italian adult siblings with genetically confirmed ATLD. Visually guided saccades were compared with those of 40 healthy subjects. Steady fixation was tested in primary and eccentric positions. Quantitative characterization of saccade parameters, saccadic intrusions (SI), and nystagmus was performed. RESULTS: Patients showed abnormally hypermetric and fast horizontal saccades to the left and greater inaccuracy than healthy subjects in all saccadic eye movements. Eye movement abnormalities included slow eye movements that preceded the initial saccade. Horizontal and vertical spontaneous jerk nystagmus, gaze-evoked, and rebound nystagmus were evident. Fixation was interrupted by large square-wave jerk SI and macrosaccadic oscillations. CONCLUSION: Slow eye movements accompanying saccades, SI, and cerebellar nystagmus are frequently seen in AT patients, additionally our ATLD patients showed the presence of fast and hypermetric saccades suggesting damage of granule cell-parallel fiber-Purkinje cell synapses of the cerebellar vermis. A dual pathogenetic mechanism involving neurodevelopmental and neurodegenerative changes is hypothesized to explain the peculiar phenotype of this disease.

20.
BMC Med ; 15(1): 41, 2017 02 24.
Article En | MEDLINE | ID: mdl-28231783

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common and best known monogenic small vessel disease. Here, we review the clinical, neuroimaging, neuropathological, genetic, and therapeutic aspects based on the most relevant articles published between 1994 and 2016 and on the personal experience of the authors, all directly involved in CADASIL research and care. We conclude with some suggestions that may help in the clinical practice and management of these patients.


CADASIL/complications , Cerebral Small Vessel Diseases/etiology , Cerebral Small Vessel Diseases/pathology , Humans
...