Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Proc Natl Acad Sci U S A ; 121(14): e2310513121, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38498724

Climate change is affecting the phenology of organisms and ecosystem processes across a wide range of environments. However, the links between organismal and ecosystem process change in complex communities remain uncertain. In snow-dominated watersheds, snowmelt in the spring and early summer, followed by a long low-flow period, characterizes the natural flow regime of streams and rivers. Here, we examined how earlier snowmelt will alter the phenology of mountain stream organisms and ecosystem processes via an outdoor mesocosm experiment in stream channels in the Eastern Sierra Nevada, California. The low-flow treatment, simulating a 3- to 6-wk earlier return to summer baseflow conditions projected under climate change scenarios in the region, increased water temperature and reduced biofilm production to respiration ratios by 32%. Additionally, most of the invertebrate species explaining community change (56% and 67% of the benthic and emergent taxa, respectively), changed in phenology as a consequence of the low-flow treatment. Further, emergent flux pulses of the dominant insect group (Chironomidae) almost doubled in magnitude, benefitting a generalist riparian predator. Changes in both invertebrate community structure (composition) and functioning (production) were mostly fine-scale, and response diversity at the community level stabilized seasonally aggregated responses. Our study illustrates how climate change in vulnerable mountain streams at the rain-to-snow transition is poised to alter the dynamics of stream food webs via fine-scale changes in phenology-leading to novel predator-prey "matches" or "mismatches" even when community structure and ecosystem processes appear stable at the annual scale.


Climate Change , Ecosystem , Animals , Rivers , Temperature , Invertebrates , Seasons
2.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Article En | MEDLINE | ID: mdl-38273563

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Ecosystem , Groundwater , Biodiversity , Fresh Water , Environmental Pollution
3.
Ecology ; 105(2): e4219, 2024 Feb.
Article En | MEDLINE | ID: mdl-38037301

A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.e., metacommunities) spanning basal resources to top predators from 355 freshwater sites across three continents. Specifically, we used a hierarchical partitioning method to disentangle the propagation of temporal variability in abundance across spatial scales and trophic levels. We then used structural equation modeling to determine if the strength and direction of relationships between temporal variability, synchrony, biodiversity, and environmental and spatial settings depended on trophic level and spatial scale. We found that temporal variability in abundance decreased from producers to tertiary consumers but did so mainly at the local scale. Species population synchrony within sites increased with trophic level, whereas synchrony among communities decreased. At the local scale, temporal variability in precipitation and species diversity were associated with population variability (linear partial coefficient, ß = 0.23) and population synchrony (ß = -0.39) similarly across trophic levels, respectively. At the regional scale, community synchrony was not related to climatic or spatial predictors, but the strength of relationships between metacommunity variability and community synchrony decreased systematically from top predators (ß = 0.73) to secondary consumers (ß = 0.54), to primary consumers (ß = 0.30) to producers (ß = 0). Our results suggest that mobile predators may often stabilize metacommunities by buffering variability that originates at the base of food webs. This finding illustrates that the trophic structure of metacommunities, which integrates variation in organismal body size and its correlates, should be considered when investigating ecological stability in natural systems. More broadly, our work advances the notion that temporal stability is an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss and habitat fragmentation.


Ecosystem , Food Chain , Biodiversity , Fresh Water , Time Factors
4.
Nat Commun ; 14(1): 1728, 2023 Mar 28.
Article En | MEDLINE | ID: mdl-36977667

Despite its far-reaching implications for conservation and natural resource management, little is known about the color of environmental noise, or the structure of temporal autocorrelation in random environmental variation, in streams and rivers. Here, we analyze the geography, drivers, and timescale-dependence of noise color in streamflow across the U.S. hydrography, using streamflow time series from 7504 gages. We find that daily and annual flows are dominated by red and white spectra respectively, and spatial variation in noise color is explained by a combination of geographic, hydroclimatic, and anthropogenic variables. Noise color at the daily scale is influenced by stream network position, and land use and water management explain around one third of the spatial variation in noise color irrespective of the timescale considered. Our results highlight the peculiarities of environmental variation regimes in riverine systems, and reveal a strong human fingerprint on the stochastic patterns of streamflow variation in river networks.

5.
Ecology ; 104(2): e3911, 2023 02.
Article En | MEDLINE | ID: mdl-36335551

Biota in disturbance-prone landscapes have evolved a variety of strategies to persist long term, either locally (resistance) or by regional recolonization (resilience). Habitat fragmentation and isolation can limit the availability of recolonization pathways, and thus the dynamics of post-disturbance community reestablishment. However, empirical studies on how isolation may control the mechanisms that enable community recovery remain scarce. Here, we studied a pristine intermittent stream (Chalone Creek, Pinnacles National Park, California) to understand how isolation (distance from a perennial pool) alters invertebrate community recolonization after drying. We monitored benthic invertebrate reestablishment during the rewetting phase along a ~2-km gradient of isolation, using mesh traps that selected for specific recolonization pathways (i.e., drift, flying, swimming/crawling, and vertical migration from the hyporheic). We collected daily emigration samples, surveyed the reestablished benthic community after 6 weeks, and compared assemblages across trap types and sites. We found that isolation mediated migration dynamics by delaying peak vertical migration from the hyporheic by ca. 1 day on average per 250 m of dry streambed. The relative importance of reestablishment mechanisms varied longitudinally-with more resistance strategists (up to 99.3% of encountered individuals) in the upstream reaches, and increased drift and aerial dispersers in the more fragmented habitats (up to 17.2% and 18%, respectively). Resistance strategists persisting in the hyporheic dominated overall (88.2% of individuals, ranging 52.9%-99.3% across sites), but notably most of these organisms subsequently outmigrated downstream (85.6% on average, ranging 52.1%-96% across sites). Thus, contrary to conventional wisdom, resistance strategists largely contributed to downstream resilience as well as to local community recovery. Finally, increased isolation was associated with a general decrease in benthic invertebrate diversity, and up to a 3-fold increase in the relative abundance of drought-resistant stoneflies. Our results advance the notion that understanding spatial context is key to predicting post-disturbance community dynamics. Considering the interaction between disturbance and fragmentation may help inform conservation in ecosystems that are subject to novel environmental regimes.


Ecosystem , Insecta , Humans , Animals , Invertebrates , Biota , Droughts
6.
Ecol Lett ; 26(2): 291-301, 2023 Feb.
Article En | MEDLINE | ID: mdl-36468276

Global ecosystems are facing a deepening biodiversity crisis, necessitating robust approaches to quantifying species extinction risk. The lower limit of the macroecological relationship between species range and body size has long been hypothesized as an estimate of the relationship between the minimum viable range size (MVRS) needed for species persistence and the organismal traits that affect space and resource requirements. Here, we perform the first explicit test of this assumption by confronting the MVRS predicted by the range-body size relationship with an independent estimate based on the scale of synchrony in abundance among spatially separated populations of riverine fish. We provide clear evidence of a positive relationship between the scale of synchrony and species body size, and strong support for the MVRS set by the lower limit of the range-body size macroecological relationship. This MVRS may help prioritize first evaluations for unassessed or data-deficient taxa in global conservation assessments.


Conservation of Natural Resources , Ecosystem , Animals , Biodiversity , Extinction, Biological , Fishes , Endangered Species
7.
Glob Chang Biol ; 28(17): 5104-5120, 2022 09.
Article En | MEDLINE | ID: mdl-35583053

Investigating the effects of climatic variability on biological diversity, productivity, and stability is key to understanding possible futures for ecosystems under accelerating climate change. A critical question for estuarine ecosystems is, how does climatic variability influence juvenile recruitment of different fish species and life histories that use estuaries as nurseries? Here we examined spatiotemporal abundance trends and environmental responses of 18 fish species that frequently spend the juvenile stage rearing in the San Francisco Estuary, CA, USA. First, we constructed multivariate autoregressive state-space models using age-0 fish abundance, freshwater flow (flow), and sea surface temperature data (SST) collected over four decades. Next, we calculated coefficients of variation (CV) to assess portfolio effects (1) within and among species, life histories (anadromous, marine opportunist, or estuarine dependent), and the whole community; and (2) within and among regions of the estuary. We found that species abundances varied over space and time (increasing, decreasing, or dynamically stable); and in 83% of cases, in response to environmental conditions (wet/dry, cool/warm periods). Anadromous species responded strongly to flow in the upper estuary, marine opportunist species responded to flow and/or SST in the lower estuary, and estuarine dependent species had diverse responses across the estuary. Overall, the whole community when considered across the entire estuary had the lowest CV, and life histories and species provided strong biological insurance to the portfolio (2.4- to 3.5-fold increases in stability, respectively). Spatial insurance also increased stability, although to a lesser extent (up to 1.6-fold increases). Our study advances the notion that fish recruitment stability in estuaries is controlled by biocomplexity-life history diversity and spatiotemporal variation in the environment. However, intensified drought and marine heatwaves may increase the risk of multiple consecutive recruitment failures by synchronizing species dynamics and trajectories via Moran effects, potentially diminishing estuarine nursery function.


Ecosystem , Fresh Water , Animals , Climate Change , Estuaries , Fishes/physiology
8.
Ecology ; 103(2): e03587, 2022 02.
Article En | MEDLINE | ID: mdl-34792187

Impacts of environmental stressors on food webs are often difficult to predict because trophic levels can respond in divergent ways, and biotic interactions may dampen or amplify responses. Here we studied food-web-level impacts of urban wastewater pollution, a widespread source of degradation that can alter stream food webs via top-down and bottom-up processes. Wastewater may (1) subsidize primary producers by decreasing nutrient limitation, inducing a wide-bottomed trophic pyramid. However, (2) wastewater may also reduce the quality and diversity of resources, which could decrease energy transfer efficiency by reducing consumer fitness, leading to predator starvation. Additionally, (3) if higher trophic levels are particularly sensitive to pollution, primary consumers could be released from predation pressure. We tested these hypotheses in 10 pairs of stream sites located upstream and downstream of urban wastewater effluents with different pollutant levels. We found that wastewater pollution reduced predator richness by ∼34%. Community size spectra (CSS) slopes were steeper downstream than upstream of wastewater effluents in all except one impact site where predators became locally extinct. Further, variation in downstream CSS slopes were correlated with pollution loads: the more polluted the stream, the steeper the CSS. We estimate that wastewater pollution decreased energy transfer efficiencies to primary consumers by ∼70%, limiting energy supply to predators. Additionally, traits increasing vulnerability to chemical pollution were overrepresented among predators, which presented compressed trophic niches (δ15 N-δ13 C) downstream of effluents. Our results show that wastewater pollution can impact stream food webs via a combination of energy limitation to consumers and extirpation of pollution-sensitive top predators. Understanding the indirect (biotically mediated) vs. direct (abiotic) mechanisms controlling responses to stress may help anticipating impacts of altered water quantity and quality, key signatures of global change.


Food Chain , Wastewater , Animals , Ecosystem , Predatory Behavior
9.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article En | MEDLINE | ID: mdl-34155095

As climate change unfolds, changes in population dynamics and species distribution ranges are expected to fundamentally reshuffle communities worldwide. Yet, a comprehensive understanding of the mechanisms and extent of community reorganization remains elusive. This is particularly true in riverine systems, which are simultaneously exposed to changing temperature and streamflow, and where land-use change continues to be a major driver of biodiversity loss. Here, we use the most comprehensive compilation of fish abundance time series to date to provide a global synthesis of climate- and LU-induced effects on riverine biota with respect to changes in species thermal and streamflow affinities. We demonstrate that fish communities are increasingly dominated by thermophilic (warm-water) and limnophilic (slow-water) species. Despite being consistent with trends in water temperature and streamflow observed over recent decades, these community changes appear largely decoupled from each other and show wide spatial variation. We further reveal a synergy among climate- and land use-related drivers, such that community thermophilization is heightened in more human-modified systems. Importantly, communities in which species experience thermal and flow regimes that approach or exceed their tolerance thresholds (high community sensitivity), as well as species-poor communities (low community resilience), also display faster rates of compositional change. This research illustrates that quantifying vulnerability of riverine systems to climate change requires a broadening from a narrower thermal focus to more integrative approaches that account for the spatially varying and multifaceted sensitivity of riverine organisms to the interactive effects of water temperature, hydrology, and other anthropogenic changes.


Climate Change , Fishes/physiology , Internationality , Rivers , Animals , Geography , Models, Theoretical , Temperature , Time Factors , Water Movements
10.
Glob Chang Biol ; 27(17): 4024-4039, 2021 Sep.
Article En | MEDLINE | ID: mdl-34032337

Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies. In turn, local stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations-but not if large-scale stressors synchronize environmental conditions and biological responses. Here, we hypothesized that droughts could drastically decrease the stability of invertebrate metapopulations both by filtering out poorly adapted species locally, and by synchronizing their dynamics across a river network. We tested this hypothesis via multivariate autoregressive state-space (MARSS) models on spatially replicated, long-term data describing aquatic invertebrate communities and hydrological conditions in a set of temperate, lowland streams subject to seasonal and supraseasonal drying events. This quantitative approach allowed us to assess the influence of local (flow magnitude) and network-scale (hydrological connectivity) drivers on invertebrate long-term trajectories, and to simulate near-future responses to a range of drought scenarios. We found that fluctuations in species abundances were heterogeneous across communities and driven by a combination of hydrological and stochastic drivers. Among metapopulations, increasing extent of dry reaches reduced the abundance of functional groups with low resistance or resilience capacities (i.e. low ability to persist in situ or recolonize from elsewhere, respectively). Our simulations revealed that metapopulation quasi-extinction risk for taxa vulnerable to drought increased exponentially as flowing habitats contracted within the river network, whereas the risk for taxa with resistance and resilience traits remained stable. Our results suggest that drought can be a synchronizing agent in riverscapes, potentially leading to regional quasi-extinction of species with lower resistance and resilience abilities. Better recognition of drought-driven synchronization may increase realism in species extinction forecasts as hydroclimatic extremes continue to intensify worldwide.


Droughts , Rivers , Animals , Ecosystem , Hydrology , Invertebrates
11.
Ecol Lett ; 24(4): 791-801, 2021 Apr.
Article En | MEDLINE | ID: mdl-33619868

Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time-series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitats.


Ecosystem , Rivers , Animals , Europe , Geography , Population Dynamics
12.
WIREs Water ; 7(5)2020 Aug 28.
Article En | MEDLINE | ID: mdl-33365126

Conceptual models underpin river ecosystem research. However, current models focus on continuously flowing rivers and few explicitly address characteristics such as flow cessation and drying. The applicability of existing conceptual models to nonperennial rivers that cease to flow (intermittent rivers and ephemeral streams, IRES) has not been evaluated. We reviewed 18 models, finding that they collectively describe main drivers of biogeochemical and ecological patterns and processes longitudinally (upstream-downstream), laterally (channel-riparian-floodplain), vertically (surface water-groundwater), and temporally across local and landscape scales. However, perennial rivers are longitudinally continuous while IRES are longitudinally discontinuous. Whereas perennial rivers have bidirectional lateral connections between aquatic and terrestrial ecosystems, in IRES, this connection is unidirectional for much of the time, from terrestrial-to-aquatic only. Vertical connectivity between surface and subsurface water occurs bidirectionally and is temporally consistent in perennial rivers. However, in IRES, this exchange is temporally variable, and can become unidirectional during drying or rewetting phases. Finally, drying adds another dimension of flow variation to be considered across temporal and spatial scales in IRES, much as flooding is considered as a temporally and spatially dynamic process in perennial rivers. Here, we focus on ways in which existing models could be modified to accommodate drying as a fundamental process that can alter these patterns and processes across spatial and temporal dimensions in streams. This perspective is needed to support river science and management in our era of rapid global change, including increasing duration, frequency, and occurrence of drying.

13.
WIREs Water ; 6(6)2019.
Article En | MEDLINE | ID: mdl-31827789

River flows connect people, places, and other forms of life, inspiring and sustaining diverse cultural beliefs, values, and ways of life. The concept of environmental flows provides a framework for improving understanding of relationships between river flows and people, and for supporting those that are mutually beneficial. Nevertheless, most approaches to determining environmental flows remain grounded in the biophysical sciences. The newly revised Brisbane Declaration and Global Action Agenda on Environmental Flows (2018) represents a new phase in environmental flow science and an opportunity to better consider the co-constitution of river flows, ecosystems, and society, and to more explicitly incorporate these relationships into river management. We synthesize understanding of relationships between people and rivers as conceived under the renewed definition of environmental flows. We present case studies from Honduras, India, Canada, New Zealand, and Australia that illustrate multidisciplinary, collaborative efforts where recognizing and meeting diverse flow needs of human populations was central to establishing environmental flow recommendations. We also review a small body of literature to highlight examples of the diversity and interdependencies of human-flow relationships-such as the linkages between river flow and human well-being, spiritual needs, cultural identity, and sense of place-that are typically overlooked when environmental flows are assessed and negotiated. Finally, we call for scientists and water managers to recognize the diversity of ways of knowing, relating to, and utilizing rivers, and to place this recognition at the center of future environmental flow assessments. This article is categorized under: Water and Life > Conservation, Management, and Awareness Human Water > Water Governance Human Water > Water as Imagined and Represented.

14.
Science ; 365(6459)2019 09 20.
Article En | MEDLINE | ID: mdl-31604208

River ecosystems are highly biodiverse, influence global biogeochemical cycles, and provide valued services. However, humans are increasingly degrading fluvial ecosystems by altering their streamflows. Effective river restoration requires advancing our mechanistic understanding of how flow regimes affect biota and ecosystem processes. Here, we review emerging advances in hydroecology relevant to this goal. Spatiotemporal variation in flow exerts direct and indirect control on the composition, structure, and dynamics of communities at local to regional scales. Streamflows also influence ecosystem processes, such as nutrient uptake and transformation, organic matter processing, and ecosystem metabolism. We are deepening our understanding of how biological processes, not just static patterns, affect and are affected by stream ecosystem processes. However, research on this nexus of flow-biota-ecosystem processes is at an early stage. We illustrate this frontier with evidence from highly altered regulated rivers and urban streams. We also identify research challenges that should be prioritized to advance process-based river restoration.


Biota , Ecosystem , Environmental Monitoring , Rivers , Water Movements , Conservation of Natural Resources , Environmental Restoration and Remediation , Food Chain , Hydrology , Urbanization
16.
Science ; 364(6444)2019 06 07.
Article En | MEDLINE | ID: mdl-31171667

Williams et al claim that the data used in Sabo et al were improperly scaled to account for fishing effort, thereby invalidating the analysis. Here, we reanalyze the data rescaled per Williams et al and following the methods in Sabo et al Our original conclusions are robust to rescaling, thereby invalidating the assertion that our original analysis is invalid.


Fisheries , Rivers , Food Supply , Forecasting
17.
Science ; 361(6402): 546-547, 2018 08 10.
Article En | MEDLINE | ID: mdl-30093585
18.
Glob Chang Biol ; 24(8): 3749-3765, 2018 08.
Article En | MEDLINE | ID: mdl-29665147

Novel flow regimes resulting from dam operations and overallocation of freshwater resources are an emerging consequence of global change. Yet, anticipating how freshwater biodiversity will respond to surging flow regime alteration requires overcoming two challenges in environmental flow science: shifting from local to riverscape-level understanding of biodiversity dynamics, and from static to time-varying characterizations of the flow regime. Here, we used time-series methods (wavelets and multivariate autoregressive models) to quantify flow-regime alteration and to link time-varying flow regimes to the dynamics of multiple local communities potentially connected by dispersal (i.e., a metacommunity). We studied the Chattahoochee River below Buford dam (Georgia, U.S.A.), and asked how flow regime alteration by a large hydropower dam may control the long-term functional trajectory of the downstream invertebrate metacommunity. We found that seasonal variation in hydropeaking synchronized temporal fluctuations in trait abundance among the flow-altered sites. Three biological trait states describing adaptation to fast flows benefitted from flow management for hydropower, but did not compensate for declines in 16 "loser" traits. Accordingly, metacommunity-wide functional diversity responded negatively to hydropeaking intensity, and stochastic simulations showed that the risk of functional diversity collapse within the next 4 years would decrease by 17% if hydropeaking was ameliorated, or by 9% if it was applied every other season. Finally, an analysis of 97 reference and 23 dam-affected river sites across the U.S. Southeast suggested that flow variation at extraneous, human-relevant scales (12-hr, 24-hr, 1-week) is relatively common in rivers affected by hydropower dams. This study advances the notion that novel flow regimes are widespread, and simplify the functional structure of riverine communities by filtering out taxa with nonadaptive traits and by spatially synchronizing their dynamics. This is relevant in the light of ongoing and future hydrologic alteration due to climate non-stationarity and the new wave of dams planned globally.


Biodiversity , Invertebrates/classification , Rivers , Animals , Climate Change , Humans , Invertebrates/physiology , Seasons , Water Movements
19.
Sci Total Environ ; 625: 301-310, 2018 Jun 01.
Article En | MEDLINE | ID: mdl-29289778

Flow regimes are a major driver of community composition and structure in riverine ecosystems, and flow regulation by dams often induces artificially-stable flow regimes downstream. This represents a major source of hydrological alteration, particularly in regions where biota is adapted to strong seasonal and interannual flow variability. We hypothesized that dam-induced hydrological stability should increase the availability of autochthonous resources at the base of the food web. This, in turn, should favour herbivorous over detritivorous strategies, increasing the diversity of primary consumers, and the food-web width and length. We tested this hypothesis by studying the longitudinal variation in food-web structure in a highly-seasonal Mediterranean river affected by an irrigation dam. We compared an unregulated reach to several reaches downstream of the dam. Hydrological and sedimentological stability increased downstream of the dam, and altered the type and quantity of available resources downstream, prompting a change from a detritus-based to an algae-based food web. The fraction of links between top and intermediate species also increased, and the food web became longer and wider at the intermediate trophic levels. Food-web structure did not recover 14km downstream of the dam, despite a partial restitution of the flow regime. Our results advance the notion that hydrologic alteration affects riverine food webs via additions/deletions of taxa and variation in the strength and distribution of food-web interactions. Thus, flow regulation by dams may not only impact individual facets of biodiversity, but also food-web level properties across river networks.


Biodiversity , Food Chain , Hydrology , Rivers , Mediterranean Region
20.
Glob Chang Biol ; 24(3): 1175-1185, 2018 03.
Article En | MEDLINE | ID: mdl-29139216

Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama-Coosa-Tallapoosa (ACT), and Apalachicola-Chattahoochee-Flint (ACF) basins. Using long-term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure "expected" streamflow) at the sub-basin scale over the past half-century. Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non-native species richness using binomial logistic regression. Sub-basin extirpations in the Southwest (n = 95 Upper CR, n = 130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub-basin extirpations in the Southeast (ACT n = 46, ACF n = 22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin-wide differences in native or non-native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be expected unless management strategies that balance flow regulation with ecological outcomes are widely implemented.


Biodiversity , Extinction, Biological , Fishes/physiology , Rivers , Animals , Climate , Fishes/classification , Power Plants , Southeastern United States , Southwestern United States
...