Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Mol Cell ; 82(10): 1924-1939.e10, 2022 05 19.
Article En | MEDLINE | ID: mdl-35439434

The 53BP1-RIF1-shieldin pathway maintains genome stability by suppressing nucleolytic degradation of DNA ends at double-strand breaks (DSBs). Although RIF1 interacts with damaged chromatin via phospho-53BP1 and facilitates recruitment of the shieldin complex to DSBs, it is unclear whether other regulatory cues contribute to this response. Here, we implicate methylation of histone H3 at lysine 4 by SETD1A-BOD1L in the recruitment of RIF1 to DSBs. Compromising SETD1A or BOD1L expression or deregulating H3K4 methylation allows uncontrolled resection of DNA ends, impairs end-joining of dysfunctional telomeres, and abrogates class switch recombination. Moreover, defects in RIF1 localization to DSBs are evident in patient cells bearing loss-of-function mutations in SETD1A. Loss of SETD1A-dependent RIF1 recruitment in BRCA1-deficient cells restores homologous recombination and leads to resistance to poly(ADP-ribose)polymerase inhibition, reinforcing the clinical relevance of these observations. Mechanistically, RIF1 binds directly to methylated H3K4, facilitating its recruitment to, or stabilization at, DSBs.


DNA Breaks, Double-Stranded , Telomere-Binding Proteins , BRCA1 Protein/genetics , DNA/metabolism , DNA End-Joining Repair , DNA Repair , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Methylation , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
2.
Mol Cell ; 76(1): 27-43.e11, 2019 10 03.
Article En | MEDLINE | ID: mdl-31447390

Cancer cells acquire unlimited proliferative capacity by either re-expressing telomerase or inducing alternative lengthening of telomeres (ALT), which relies on telomere recombination. Here, we show that ALT recombination requires coordinate regulation of the SMX and BTR complexes to ensure the appropriate balance of resolution and dissolution activities at recombining telomeres. Critical to this control is SLX4IP, which accumulates at ALT telomeres and interacts with SLX4, XPF, and BLM. Loss of SLX4IP increases ALT-related phenotypes, which is incompatible with cell growth following concomitant loss of SLX4. Inactivation of BLM is sufficient to rescue telomere aggregation and the synthetic growth defect in this context, suggesting that SLX4IP favors SMX-dependent resolution by antagonizing promiscuous BLM activity during ALT recombination. Finally, we show that SLX4IP is inactivated in a subset of ALT-positive osteosarcomas. Collectively, our findings uncover an SLX4IP-dependent regulatory mechanism critical for telomere maintenance in ALT cancer cells.


Bone Neoplasms/enzymology , Carrier Proteins/metabolism , Osteosarcoma/enzymology , RecQ Helicases/metabolism , Telomere Homeostasis , Telomere/metabolism , Animals , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Carrier Proteins/genetics , Cell Proliferation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , HEK293 Cells , HeLa Cells , Humans , Mice, Knockout , Mice, SCID , Osteosarcoma/genetics , Osteosarcoma/pathology , Protein Binding , Protein Interaction Domains and Motifs , RecQ Helicases/genetics , Recombinases/genetics , Recombinases/metabolism , Signal Transduction , Telomere/genetics , Telomere/pathology
...