Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915646

RESUMEN

Zinc knuckle (ZCCHC) motif-containing proteins are present in unicellular and multicellular eukaryotes and most ZCCHC proteins with known functions participate in the metabolism of various classes of RNA, such as mRNAs, ribosomal RNAs, and microRNAs. The Arabidopsis (Arabidopsis thaliana) genome encodes 69 ZCCHC-containing proteins, but the functions of most remain unclear. One of these proteins is CAX-INTERACTING PROTEIN 4 (CXIP4), which has been classified as a PTHR31437 family member, along with human SREK1-interacting protein 1 (SREK1IP1), which is thought to function in pre-mRNA splicing and RNA methylation. Metazoan SREK1IP1-like and plant CXIP4-like proteins only share a ZCCHC motif, and their functions remain almost entirely unknown. We studied two loss-of-function alleles of Arabidopsis CXIP4, the first mutations in PTHR31437 family genes described to date: cxip4-1 is likely null and shows early lethality, and cxip4-2 is hypomorphic and viable, with pleiotropic morphological defects. The cxip4-2 mutant exhibited deregulation of defense genes and upregulation of transcription factor encoding genes, some of which might explain its developmental defects. This mutant also exhibited increased intron retention events, and the specific functions of misspliced genes, such as those involved in "gene silencing by DNA methylation" and "mRNA polyadenylation factor" suggest that CXIP4 has additional functions. The CXIP4 protein localizes to the nucleus in a pattern resembling nuclear speckles, which are rich in splicing factors. Therefore, CXIP4 is required for plant survival and proper development, and mRNA maturation.

2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928373

RESUMEN

Cytokinesis in plant cells begins with the fusion of vesicles that transport cell wall materials to the center of the cell division plane, where the cell plate forms and expands radially until it fuses with the parental cell wall. Vesicle fusion is facilitated by trans-SNARE complexes, with assistance from Sec1/Munc18 (SM) proteins. The SNARE protein KNOLLE and the SM protein KEULE are required for membrane fusion at the cell plate. Due to the crucial function of KEULE, all Arabidopsis (Arabidopsis thaliana) keule mutants identified to date are seedling lethal. Here, we identified the Arabidopsis serrata4-1 (sea4-1) and sea4-2 mutants, which carry recessive, hypomorphic alleles of KEULE. Homozygous sea4-1 and sea4-2 plants are viable and fertile but have smaller rosettes and fewer leaves at bolting than the wild type. Their leaves are serrated, small, and wavy, with a complex venation pattern. The mutant leaves also develop necrotic patches and undergo premature senescence. RNA-seq revealed transcriptome changes likely leading to reduced cell wall integrity and an increase in the unfolded protein response. These findings shed light on the roles of KEULE in postembryonic development, particularly in the patterning of rosette leaves and leaf margins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Mutación , Hojas de la Planta , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Fenotipo
3.
Plant Cell ; 30(11): 2855-2872, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30361235

RESUMEN

Ribosome biogenesis is fundamental to growth and development in eukaryotes and is linked to human diseases and cancer. Arabidopsis thaliana MORPHOLOGY OF ARGONAUTE1-52 SUPPRESSED 2 (MAS2) participates in splicing and 45S ribosomal DNA (rDNA) expression. In a screen for MAS2 interactors, we identified RIBOSOMAL RNA PROCESSING 7 (RRP7), an ortholog of yeast rRNA processing protein 7 (Rrp7), which is required for 18S ribosomal RNA (rRNA) maturation. Arabidopsis rrp7 mutants exhibit a pleiotropic phenotype including slow growth, altered shoot phyllotaxy, aberrant venation in lateral organs, partial infertility, and abscisic acid hypersensitivity in seedlings. In Arabidopsis, RRP7 localizes mainly to the nucleolus, the site of the 45S rDNA transcription that produces a 45S pre-rRNA primary transcript, precursor of the 25S, 18S and 5.8S rRNAs. Lack of RRP7 function perturbs 18S rRNA maturation, causes nucleolar hypertrophy, and results in an increased 25S/18S rRNA ratio. Arabidopsis contains hundreds of 45S rDNA genes whose expression is epigenetically regulated, and deregulated, in rrp7 mutants. Double mutant analysis revealed synergistic interactions between RRP7 alleles and alleles of MAS2, NUCLEOLIN1 (NUC1), and HISTONE DEACETYLASE 6 (HDA6), which encode epigenetic regulators of 45S rDNA transcription. Our results reveal the evolutionarily conserved but divergent roles of RRP7 as a ribosome biogenesis factor.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ARN Ribosómico 18S/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Regulación de la Expresión Génica de las Plantas , ARN Ribosómico 18S/genética , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...