Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36839923

RESUMEN

Human papilloma virus (HPV) is responsible for all cases of cervical cancer. While prophylactic vaccines are available, the development of peptide-based vaccines as a therapeutic strategy is still under investigation. In comparison with the traditional and currently used treatment strategies of chemotherapy and surgery, vaccination against HPV is a promising therapeutic option with fewer side effects. A peptide derived from the HPV-16 E7 protein, called 8Qm, in combination with adjuvants showed promise as a therapeutic vaccine. Here, the ability of polymerized natural amino acids to act as a self-adjuvating delivery system as a therapeutic vaccine was investigated for the first time. Thus, 8Qm was conjugated to polyleucine by standard solid-phase peptide synthesis and self-assembled into nanoparticles or incorporated in liposomes. The liposome bearing the 8Qm conjugate significantly increased mice survival and decreased tumor growth after a single immunization. Further, these liposomes eradicated seven-day-old well-established tumors in mice. Dendritic cell (DC)-targeting moieties were introduced to further enhance vaccine efficacy, and the newly designed liposomal vaccine was tested in mice bearing 11-day-old tumors. Interestingly, these DCs-targeting moieties did not significantly improve vaccine efficacy, whereas the simple liposomal formulation of 8Qm-polyleucine conjugate was still effective in tumor eradication. In summary, a peptide-based anticancer vaccine was developed that stimulated strong cellular immune responses without the help of a classical adjuvant.

2.
Biomacromolecules ; 23(12): 5361-5372, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456928

RESUMEN

Multistimuli-responsive polymers are important for controlled release. Owing to the fact that these polymers are derived from vinyl-based monomers, their decoration with other molecules is limited. Polysaccharides, especially chitosan (CS) and hyaluronic acid (HA), are pH-responsive biopolymers, whose chemical structures contain reactive functional groups for feasible chemical modifications to obtain add-on functions. The present work demonstrates the introduction of polymers with upper critical solution temperature (UCST) and lower critical solution temperature (LCST) performances onto CS and HA, respectively. By simply varying the mole ratio between the CS-containing UCST polymer and the HA-containing LCST polymer along with adjusting the pH, a polymer system with a UCST-LCST-pH multiresponsive window can be obtained. This multiresponsive window enables us to control the encapsulation and release with repeatability as evidenced from a model study on lysozyme. The present work, for the first time, shows a simple approach to obtain multiresponsive biodegradable polymers through the formation of a single polymer complex to tailor a specific multiresponsive window.


Asunto(s)
Quitosano , Polímeros , Polímeros/química , Ácido Hialurónico , Temperatura , Concentración de Iones de Hidrógeno
3.
Langmuir ; 38(18): 5915-5923, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35439019

RESUMEN

Cationic polymers are known to attach on an anionic cell surface and favor gene transportation/transfection into the cells. However, when the positive charges accumulate, they tend to cause cell damage and delivery failure. Chitosan (CS) is a potential cationic bio-derived polymer whose chemical structures can be modified to fine-tune the charges as well as the add-on functions. The present work demonstrates (i) the decoration of a nucleic acid sequence-like brush structure on CS to allow the specific interaction with DNA and (ii) delivery into the cell. By simply applying mercaptoacetic acid as the chain transfer agent, the grafting of poly(hydroxyethyl methacrylate) (PHEMA) containing Thy (P(HEMA-Thy)) on CS is possible. The brush-like P(HEMA-Thy) leads Thy moieties to be in sequences. The Thy sequences perform as poly[T] for the specific interaction with ssDNA. The synergistic effect of CS and Thy sequences, i.e., electrostatic and base pairing interactions, results in an effective and efficient binding with ssDNA as well as significant delivery, especially in cellular uptake and cell viability. The use of CS in combination with Thy sequences in brush-like structures on CS is a model for other polysaccharides to be conjugated with the as-designed nucleic acid sequences for potential gene delivery.


Asunto(s)
Quitosano , Cationes , Quitosano/química , ADN de Cadena Simple , Técnicas de Transferencia de Gen , Polihidroxietil Metacrilato/química , Timina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...