Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Molecules ; 29(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611776

RESUMEN

The aim of this case study was the evaluation of the selected metals' concentration, potential toxic compound identification, cytotoxicity analysis, estimation of the airborne dust concentration, biodiversity, and number of microorganisms in the environment (leachate, soil, air) of the biggest uncontrolled post-industrial landfills in Poland. Based on the results obtained, preliminary solutions for the future management of post-industrial objects that have become an uncontrolled landfill were indicated. In the air, the PM1 fraction dominated, constituting 78.1-98.2% of the particulate matter. Bacterial counts were in the ranges of 9.33 × 101-3.21 × 103 CFU m-3 (air), 1.87 × 105-2.30 × 106 CFU mL-1 (leachates), and 8.33 × 104-2.69 × 106 CFU g-1 (soil). In the air, the predominant bacteria were Cellulosimicrobium and Stenotrophomonas. The predominant fungi were Mycosphaerella, Cladosporium, and Chalastospora. The main bacteria in the leachates and soils were Acinetobacter, Mortierella, Proteiniclasticum, Caloramator, and Shewanella. The main fungi in the leachates and soils were Lindtneria. Elevated concentrations of Pb, Zn, and Hg were detected. The soil showed the most pronounced cytotoxic potential, with rates of 36.55%, 63.08%, and 100% for the A-549, Caco-2, and A-549 cell lines. Nine compounds were identified which may be responsible for this cytotoxic effect, including 2,4,8-trimethylquinoline, benzo(f)quinoline, and 1-(m-tolyl)isoquinoline. The microbiome included bacteria and fungi potentially metabolizing toxic compounds and pathogenic species.


Asunto(s)
Polvo , Mercurio , Humanos , Células CACO-2 , Metales , Suelo
2.
Metabolomics ; 20(1): 14, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267657

RESUMEN

INTRODUCTION: Bladder cancer is a common malignancy affecting the urinary tract and effective biomarkers and for which monitoring therapeutic interventions have yet to be identified. OBJECTIVES: Major aim of this work was to perform metabolomic profiling of human bladder cancer and adjacent normal tissue and to evaluate cancer biomarkers. METHODS: This study utilized nuclear magnetic resonance (NMR) and high-resolution nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS) methods to investigate polar metabolite profiles in tissue samples from 99 bladder cancer patients. RESULTS: Through NMR spectroscopy, six tissue metabolites were identified and quantified as potential indicators of bladder cancer, while LDI-MS allowed detection of 34 compounds which distinguished cancer tissue samples from adjacent normal tissue. Thirteen characteristic tissue metabolites were also found to differentiate bladder cancer tumor grades and thirteen metabolites were correlated with tumor stages. Receiver-operating characteristics analysis showed high predictive power for all three types of metabolomics data, with area under the curve (AUC) values greater than 0.853. CONCLUSION: To date, this is the first study in which bladder human normal tissues adjacent to cancerous tissues are analyzed using both NMR and MS method. These findings suggest that the metabolite markers identified in this study may be useful for the detection and monitoring of bladder cancer stages and grades.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Vejiga Urinaria , Humanos , Metabolómica , Área Bajo la Curva , Biomarcadores de Tumor
3.
J Pharm Biomed Anal ; 240: 115966, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38217999

RESUMEN

Bladder cancer (BC) ranks among the most common cancers globally, with an increasing occurrence, particularly in developed nations. Utilizing tissue metabolomics presents a promising strategy for identifying potential biomarkers for cancer detection. In this study, we utilized ultra-high-performance liquid chromatography coupled with ultra-high-resolution mass spectrometry (UHPLC-UHRMS), incorporating both C18-silica and HILIC columns, to comprehensively analyze both polar and non-polar metabolite profiles in tissue samples from 99 patients with bladder cancer. By utilizing an untargeted approach with external validation, we identified twenty-five tissue metabolites that hold promise as potential indicators of BC. Furthermore, twenty-five characteristic tissue metabolites that exhibit discriminatory potential across bladder cancer tumor grades, as well as thirty-nine metabolites that display correlations with tumor stages were presented. Receiver operating characteristics analysis demonstrated high predictive power for all types of metabolomics data, with area under the curve (AUC) values exceeding 0.966. Notably, this study represents the first report in which human bladder normal tissues adjacent to cancerous tissues were analyzed using UHPLC-UHRMS. These findings suggest that the metabolite markers identified in this investigation could serve as valuable tools for the detection and monitoring of bladder cancer stages and grades.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Vejiga Urinaria , Humanos , Biomarcadores de Tumor/metabolismo , Vejiga Urinaria/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/metabolismo
4.
Rapid Commun Mass Spectrom ; 37(20): e9621, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37706428

RESUMEN

RATIONALE: Hormones are compounds that perform many important functions in the human body, but above all their task is to maintain homeostasis by adapting them to the constantly changing environmental conditions. Even minor hormonal disorders have a negative effect on the body, leading to physical or mental changes. Therefore, monitoring these changes and precise quantification of hormones are essential for the early diagnosis of diseases related to hormonal disorders. METHODS: Application of monoisotopic silver-109 and gold nanoparticles obtained by PFL (pulsed fiber laser) 2D GS (galvo-scanner) LGN (laser-generated nanomaterial) for high-resolution laser desorption/ionization mass spectrometry (LDI-MS) and mass spectrometry imaging (MSI) of steroid hormones is presented. Four steroid hormones, estrone, prednisolone, corticosterone and progesterone, were used as test compounds for quantitative analysis with matrix-assisted LDI time-of-flight MS apparatus. Moreover, comparison of manual measurements and semiautomatic MSI with both types of nanoparticles was performed. Methods were also tested on spiked human blood serum for quantification of steroid hormones and for estimation of the matrix effect. RESULTS: Hormones were directly tested in 1 000 000-fold concentration change conditions ranging from 1 mg/mL to 1 ng/mL which equates to 300 ng to 300 fg of hormone per measurement spot. For almost all tested hormones MSI allowed one to obtain equal or lower limit of detection value than manual LDI-MS. The best results judged by lowest limit of detection values are found for silver-109 nanoparticles. CONCLUSION: The results of the quantitative analysis of steroid hormones using silver-109 and gold nanoparticles prepared with PFL 2D GS LGN for LDI-MS and semiautomatic LDI-MSI are presented. It has been proven that nanoparticles obtained by laser synthesis can be successfully used for the analysis of steroid hormones in a wide range of concentrations.


Asunto(s)
Oro , Nanopartículas del Metal , Humanos , Espectrometría de Masas , Rayos Láser , Corticosterona , Estrona
5.
Sci Rep ; 13(1): 9802, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328580

RESUMEN

Bladder cancer (BC) is a common urological malignancy with a high probability of death and recurrence. Cystoscopy is used as a routine examination for diagnosis and following patient monitoring for recurrence. Repeated costly and intrusive treatments may discourage patients from having frequent follow-up screenings. Hence, exploring novel non-invasive ways to help identify recurrent and/or primary BC is critical. In this work, 200 human urine samples were profiled using ultra-high-performance liquid chromatography and ultra-high-resolution mass spectrometry (UHPLC-UHRMS) to uncover molecular markers differentiating BC from non-cancer controls (NCs). Univariate and multivariate statistical analyses with external validation identified metabolites that distinguish BC patients from NCs disease. More detailed divisions for the stage, grade, age, and gender are also discussed. Findings indicate that monitoring urine metabolites may provide a non-invasive and more straightforward diagnostic method for identifying BC and treating recurrent diseases.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Vejiga Urinaria , Humanos , Vejiga Urinaria/metabolismo , Detección Precoz del Cáncer , Espectrometría de Masas , Neoplasias de la Vejiga Urinaria/metabolismo , Metabolómica/métodos , Biomarcadores de Tumor/orina
6.
J Pharm Biomed Anal ; 233: 115473, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37229797

RESUMEN

Bladder cancer (BC) is frequent cancer affecting the urinary tract and is one of the most prevalent malignancies worldwide. No biomarkers that can be used for effective monitoring of therapeutic interventions for this cancer have been identified to date. This study investigated polar metabolite profiles in urine samples from 100 BC patients and 100 normal controls (NCs) using nuclear magnetic resonance (NMR) and two methods of high-resolution nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS). Five urine metabolites were identified and quantified using NMR spectroscopy to be potential indicators of bladder cancer. Twenty-five LDI-MS-detected compounds, predominantly peptides and lipids, distinguished urine samples from BC and NCs individuals. Level changes of three characteristic urine metabolites enabled BC tumor grades to be distinguished, and ten metabolites were reported to correlate with tumor stages. Receiver-Operating Characteristics analysis showed high predictive power for all three types of metabolomics data, with the area under the curve (AUC) values greater than 0.87. These findings suggest that metabolite markers identified in this study may be useful for the non-invasive detection and monitoring of bladder cancer stages and grades.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Sistema Urinario , Humanos , Biomarcadores de Tumor/orina , Neoplasias de la Vejiga Urinaria/diagnóstico , Metabolómica/métodos , Espectrometría de Masas/métodos , Sistema Urinario/metabolismo
7.
Environ Res ; 228: 115825, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011789

RESUMEN

This study focused on assessing the microbiological and chemical contamination of air, soil and leachate in uncontrolled refuse storage areas in central Poland. The research included an analysis of the number of microorganisms (culture method), endotoxin concentration (gas chromatography-mass spectrometry), heavy metals level (atomic absorption spectrometry), elemental characteristics (elemental analyser), cytotoxicity assessment against A-549 (human lung) and Caco-2 (human colon adenocarcinoma) cell lines (PrestoBlue™ test) and toxic compound identification (ultra-high-performance liquid chromatography-quadrupole time-of-flight ultrahigh-resolution mass spectrometry). Microbial contamination differed depending on the dump and the group of tested microorganisms. The number of bacteria was: 4.3 × 102 - 1.8 × 103 CFU m-3 (air); 1.1 × 103 - 1.2 × 106 CFU mL-1 (leachate); 1.0 × 106 - 3.9 × 106 CFU g-1 (soil). Respectively, for air and soil the number of fungi was: 2.2 × 102 - 4.6 × 102 CFU m-3; 1.8 × 102 - 3.9 × 103 CFU g-1. Metal levels (Fe, Mn, Pb, Zn, Al, Hg, Cd, Cu, Cr) were higher than in the control sample; however, the average concentrations did not exceed the permissible standards. The cytotoxicity of soil and leachate samples depended on the dump, sample and cell line tested. The leachates were more cytotoxic than soil extracts. Compounds belonging to pesticides, surfactants and biocides, chemicals and/or polymer degradation products, medicinal drugs and insect repellents were found. The detection of potential pathogens in the air, soil and leachate, the presence of toxic compounds and the confirmation of the cytotoxic effect of leachate and soil on human cell lines justify the need for further research on the risks posed by illegal dumps. These studies should aim at developing a unified assessment method and a method to minimise the risk of contaminants spreading in the environment, including harmful biological agents.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Metales Pesados , Contaminantes del Suelo , Humanos , Polonia , Células CACO-2 , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/toxicidad , Metales Pesados/análisis , Suelo/química , Medición de Riesgo
8.
Adv Med Sci ; 68(1): 38-45, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36566601

RESUMEN

PURPOSE: Bladder cancer (BC) is the 10th most common form of cancer worldwide and the 2nd most common cancer of the urinary tract after prostate cancer, taking into account both incidence and prevalence. MATERIALS/METHODS: Tissues from patients with BC and also tissue extracts were analyzed by laser desorption/ionization mass spectrometry imaging (LDI-MSI) with monoisotopic silver-109 nanoparticles-enhanced target (109AgNPET). RESULTS: Univariate and multivariate statistical analyses revealed 10 metabolites that differentiated between tumor and normal tissues from six patients with diagnosed BC. Selected metabolites are discussed in detail in relation to their mass spectrometry (MS) imaging results. The pathway analysis enabled us to link these compounds with 17 metabolic pathways. CONCLUSIONS: According to receiver operating characteristic (ROC) analysis of biomarkers, 10 known metabolites were identified as the new potential biomarkers with areas under the curve (AUC) higher than >0.99. In both univariate and multivariate analysis, it was predicted that these compounds could serve as useful discriminators of cancerous versus normal tissue in patients diagnosed with BC.


Asunto(s)
Nanopartículas del Metal , Neoplasias de la Vejiga Urinaria , Masculino , Humanos , Nanopartículas del Metal/química , Plata/química , Espectrometría de Masas/métodos , Biomarcadores , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/metabolismo
9.
Sci Rep ; 12(1): 15156, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071106

RESUMEN

Bladder cancer (BC) is a common urological cancer of high mortality and recurrence rates. Currently, cystoscopy is performed as standard examination for the diagnosis and subsequent monitoring for recurrence of the patients. Frequent expensive and invasive procedures may deterrent patients from regular follow-up screening, therefore it is important to look for new non-invasive methods to aid in the detection of recurrent and/or primary BC. In this study, ultra-high-performance liquid chromatography coupled with ultra-high-resolution mass spectrometry was employed for non-targeted metabolomic profiling of 200 human serum samples to identify biochemical signatures that differentiate BC from non-cancer controls (NCs). Univariate and multivariate statistical analyses with external validation revealed twenty-seven metabolites that differentiate between BC patients from NCs. Abundances of these metabolites displayed statistically significant differences in two independent training and validation sets. Twenty-three serum metabolites were also found to be distinguishing between low- and high-grade of BC patients and controls. Thirty-seven serum metabolites were found to differentiate between different stages of BC. The results suggest that measurement of serum metabolites may provide more facile and less invasive diagnostic methodology for detection of bladder cancer and recurrent disease management.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas , Metabolómica/métodos , Suero/metabolismo , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/metabolismo
10.
Rapid Commun Mass Spectrom ; 36(21): e9375, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35933593

RESUMEN

RATIONALE: 3-Hydroxycarboxylic acids are one of the major components of bacterial lipopolysaccharides (LPS), also known as endotoxins. Endotoxins pose a serious health risk and can seriously damage the internal organs of humans and animals. 3-Hydroxycarboxylic acids can be used as environmental markers to determine endotoxin levels. At the time of preparation of this manuscript no studies on laser mass spectrometry (MS) and analysis with silver nanoparticles (NP) for 3-hydroxycarboxylic acids have been published in literature. METHODS: Six acids, 3-hydroxyoctanoic (3-OH-C8:0), 3-hydroxydecanoic (3-OH-C10:0), 3-hydroxydodecanoic (3-OH-C12:0), 3-hydroxytetradecanoic (3-OH-C14:0), 3-hydroxyhexadecanoic (3-OH-C16:0), and 3-hydroxyoctadecanoic (3-OH-C18:0) acids, were used as test compounds on the target containing silver-109 NPs for quantification using matrix-assisted laser desorption/ionization (MALDI)-type mass spectrometer. Methods were also tested on spiked human blood serum samples to quantify 3-hydroxycarboxylic acids and verify the influence of the biological matrix on the measurement. RESULTS: Analyzed acids were directly tested in 1 000 000-fold concentration change conditions ranging from 1 mg/mL to 1 ng/mL. The semi-automatic MSI (MS imaging) method allowed us to obtain two to five times lower limit of detection (LOD) and lower limit of quantitation (LLOQ) values than common LDI (Bruker Daltonics, Bremen, Germany) method for analyzed acids. For almost all results of 3-hydroxycarboxylic acids, the trendline fit was better for the semi-automatic MSI method than the manual LDI method. CONCLUSION: For the first time, the use of laser MS for the quantification of 3-hydroxycarboxylic acids has been demonstrated, and it has been proven that it can be used in the quantitative analysis of such compounds over a wide range of concentrations. In addition, a comparison of two methods-manual LDI-MS and semi-automatic MSI-is presented.


Asunto(s)
Nanopartículas del Metal , Plata , Animales , Humanos , Isótopos , Rayos Láser , Lipopolisacáridos , Nanopartículas del Metal/química , Plata/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
11.
Artículo en Inglés | MEDLINE | ID: mdl-35457694

RESUMEN

This study aimed to assess the physicochemical, microbiological and toxicological hazards at an illegal landfill in central Poland. The research included the analysis of airborne dust (laser photometer), the number of microorganisms in the air, soil and leachate (culture method) and the microbial diversity in the landfill environment (high-throughput sequencing on the Illumina Miseq); the cytotoxicity (PrestoBlue) and genotoxicity (alkaline comet assay) of soil and leachate were tested. Moreover, an analysis of UHPLC-Q-ToF-UHRMS (ultra-high-performance liquid chromatography-quadrupole-time-of-flight ultrahigh-resolution mass spectrometry) was performed to determine the toxic compounds and microbial metabolites. The PM1 dust fraction constituted 99.89% and 99.99% of total dust and exceeded the threshold of 0.025 mg m-3 at the tested locations. In the air, the total number of bacteria was 9.33 × 101-1.11 × 103 CFU m-3, while fungi ranged from 1.17 × 102 to 4.73 × 102 CFU m-3. Psychrophilic bacteria were detected in the largest number in leachates (3.3 × 104 to 2.69 × 106 CFU mL-1) and in soil samples (8.53 × 105 to 1.28 × 106 CFU g-1). Bacteria belonging to Proteobacteria (42-64.7%), Bacteroidetes (4.2-23.7%), Actinobacteria (3.4-19.8%) and Firmicutes (0.7-6.3%) dominated. In the case of fungi, Basidiomycota (23.3-27.7%), Ascomycota (5.6-46.3%) and Mortierellomycota (3.1%) have the highest abundance. Bacteria (Bacillus, Clostridium, Cellulosimicrobium, Escherichia, Pseudomonas) and fungi (Microascus, Chrysosporium, Candida, Malassezia, Aspergillus, Alternaria, Fusarium, Stachybotrys, Cladosporium, Didymella) that are potentially hazardous to human health were detected in samples collected from the landfill. Tested leachates and soils were characterised by varied cyto/genotoxins. Common pesticides (carbamazepine, prometryn, terbutryn, permethrin, carbanilide, pyrethrin, carbaryl and prallethrin), quaternary ammonium compounds (benzalkonium chlorides), chemicals and/or polymer degradation products (melamine, triphenylphosphate, diphenylphtalate, insect repellent diethyltoluamide, and drugs (ketoprofen)) were found in soil and leachate samples. It has been proven that the tested landfill is the source of the emission of particulate matter; microorganisms (including potential pathogens) and cyto/genotoxic compounds.


Asunto(s)
Microbiología del Aire , Polvo , Bacterias , Polvo/análisis , Hongos , Humanos , Polonia , Suelo , Instalaciones de Eliminación de Residuos
12.
J Mass Spectrom ; 57(3): e4815, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35191130

RESUMEN

Application of monoisotopic cationic 109 Ag nanoparticles (109 AgNPs) obtained by pulsed fiber laser (PFL) 2D galvo-scanner (GS) laser generated nanomaterial (LGN) for both high resolution laser desorption/ionization mass spectrometry and mass spectrometry imaging of amino acids is presented. Four amino acids, alanine, isoleucine, lysine, and phenylalanine were used as test compounds for quantification with matrix-assisted laser desorption/ionization mas (MALDI)-type mass spectrometer. Comparison of commonly made manual measurements with semiautomatic mass spectrometry imaging (MSI) was performed providing very interesting findings. Amino acids were directly tested in 1 000 000-fold concentration change conditions ranging from 1 mg/ml to 1 ng/ml, which equates to 500 ng to 500 fg of amino acid per measurement spot. Methods were also tested on samples of human blood plasma for quantification of endogenous amino acids.

13.
J Pharm Anal ; 12(6): 889-900, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36605581

RESUMEN

Bladder cancer (BC) is one of the most frequently diagnosed types of urinary cancer. Despite advances in treatment methods, no specific biomarkers are currently in use. Targeted and untargeted profiling of metabolites and elements of human blood serum from 100 BC patients and the same number of normal controls (NCs), with external validation, was attempted using three analytical methods, i.e., nuclear magnetic resonance, gold and silver-109 nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS), and inductively coupled plasma optical emission spectrometry (ICP-OES). All results were subjected to multivariate statistical analysis. Four potential serum biomarkers of BC, namely, isobutyrate, pyroglutamate, choline, and acetate, were quantified with proton nuclear magnetic resonance, which had excellent predictive ability as judged by the area under the curve (AUC) value of 0.999. Two elements, Li and Fe, were also found to distinguish between cancer and control samples, as judged from ICP-OES data and AUC of 0.807 (in validation set). Twenty-five putatively identified compounds, mostly related to glycans and lipids, differentiated BC from NCs, as detected using LDI-MS. Five serum metabolites were found to discriminate between tumor grades and nine metabolites between tumor stages. The results from three different analytical platforms demonstrate that the identified distinct serum metabolites and metal elements have potential to be used for noninvasive detection, staging, and grading of BC.

14.
ACS Meas Sci Au ; 2(1): 14-22, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785587

RESUMEN

Preparation of monoisotopic silver-109 nanoparticles (109AgNPs) by pulsed fiber laser (PFL) ablation synthesis in solution (LASiS) with the use of a 2D galvoscanner (2D GS) is described. The procedure of covering of custom-made stainless-steel MALDI targets containing studied objects via nebulization is also presented. Examples of application of the new method (PFL-2D GS LASiS and nebulization) in mass spectrometry (MS) analyses and MS imaging (MSI) are shown. These include tests with a nonionic nucleoside and saccharide, ionic amino acids, and also a low-molecular-weight polymer. Fingerprint MS imaging is shown as an example of a fast and simple MSI procedure.

15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-991115

RESUMEN

Bladder cancer(BC)is one of the most frequently diagnosed types of urinary cancer.Despite advances in treatment methods,no specific biomarkers are currently in use.Targeted and untargeted profiling of metabolites and elements of human blood serum from 100 BC patients and the same number of normal controls(NCs),with external validation,was attempted using three analytical methods,i.e.,nuclear magnetic resonance,gold and silver-109 nanoparticle-based laser desorption/ionization mass spec-trometry(LDI-MS),and inductively coupled plasma optical emission spectrometry(ICP-OES).All results were subjected to multivariate statistical analysis.Four potential serum biomarkers of BC,namely,iso-butyrate,pyroglutamate,choline,and acetate,were quantified with proton nuclear magnetic resonance,which had excellent predictive ability as judged by the area under the curve(AUC)value of 0.999.Two elements,Li and Fe,were also found to distinguish between cancer and control samples,as judged from ICP-OES data and AUC of 0.807(in validation set).Twenty-five putatively identified compounds,mostly related to glycans and lipids,differentiated BC from NCs,as detected using LDI-MS.Five serum metab-olites were found to discriminate between tumor grades and nine metabolites between tumor stages.The results from three different analytical platforms demonstrate that the identified distinct serum metabolites and metal elements have potential to be used for noninvasive detection,staging,and grading of BC.

16.
Toxins (Basel) ; 13(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34678984

RESUMEN

Despite the awareness that work in the sewage treatment plant is associated with biological hazards, they have not been fully recognised so far. The research aims to comprehensively evaluate microbiological and toxicological hazards in the air and settled dust in workstations in a sewage treatment plant. The number of microorganisms in the air and settled dust was determined using the culture method and the diversity was evaluated using high-throughput sequencing. Endotoxin concentration was assessed with GC-MS (gas chromatography-mass spectrometry) while secondary metabolites with LC-MS/MS (liquid chromatography coupled to tandem mass spectrometry). Moreover, cytotoxicity of settled dust against a human lung epithelial lung cell line was determined with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and UHPLC-Q-ToF-UHRMS (ultra-high-performance liquid chromatography-quadrupole time-of-flight ultrahigh-resolution mass spectrometry) analysis was performed to determine the source of cytotoxicity. The total dust concentration in the sewage treatment plant was low and ranged from 0.030 mg m-3 to 0.044 mg m-3. The highest microbiological contamination was observed in sludge thickening building and screenings storage. Three secondary metabolites were detected in the air and sixteen in the settled dust. They were dominated by compounds typical of lichen and plants and Aspergillus, Penicillium and Fusarium genera mould. The settled dust from the sludge thickening building revealed high cytotoxicity to human lung epithelial cells A-549 (IC50 = 6.98 after 72 h). This effect can be attributed to a biocidal compound-didecyldimethylammonium chloride (DDAC-C10) and seven toxic compounds: 4-hydroxynonenal, carbofuran, cerulenin, diethylphosphate, fenpropimorph, naphthalene and onchidal. The presence of DDAC-C10 and other biocidal substances in the sewage treatment plant environment may bring negative results for biological sewage treatment and the natural environment in the future and contribute to microorganisms' increasing antibiotics resistance. Therefore, the concentration of antibiotics, pesticides and disinfectants in sewage treatment plant workstations should be monitored.


Asunto(s)
Aerosoles/análisis , Polvo/análisis , Exposición Profesional/análisis , Eliminación de Residuos Líquidos , Aerosoles/toxicidad , Microbiología del Aire , Línea Celular , Desinfectantes/análisis , Endotoxinas/análisis , Monitoreo del Ambiente , Humanos , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Purificación del Agua
17.
Adv Med Sci ; 66(2): 326-335, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34273747

RESUMEN

PURPOSE: Renal cell carcinoma (RCC) is a very aggressive and often fatal heterogeneous disease that is usually asymptomatic until late in the disease. There is an urgent need for RCC specific biomarkers that may be exploited clinically for diagnostic and prognostic purposes. MATERIALS/METHODS: Serum and urine samples were collected from patients with diagnosed kidney cancer and assessed with gold nanoparticle enhanced target (AuNPET) surface assisted-laser desorption/ionization mass spectrometry (SALDI MS) based metabolomics and statistical analysis. RESULTS: A database search allowed providing assignment of signals for the most promising features with a satisfactory value of the area under the curve and accuracy. Four potential biomarkers were found in urine and serum samples to distinguish clear cell renal cell carcinoma (ccRCC) from controls, 4 for the ccRCC with and without metastases, and 6 metabolites to distinguish low and high stages or grades. CONCLUSIONS: This pilot study suggests that serum and urine metabolomics based on AuNPET-LDI MS may be useful in distinguishing types, grades and stages of human RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Nanopartículas del Metal , Biomarcadores de Tumor , Carcinoma de Células Renales/diagnóstico , Oro , Humanos , Neoplasias Renales/diagnóstico , Rayos Láser , Proyectos Piloto , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Metabolomics ; 17(3): 30, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33661419

RESUMEN

INTRODUCTION: Kidney cancer is one of the most frequently diagnosed and the most lethal urinary cancer. Despite advances in treatment, no specific biomarker is currently in use to guide therapeutic interventions. OBJECTIVES: Major aim of this work was to perform metabolomic and elemental profiling of human kidney cancer and normal tissue and to evaluate cancer biomarkers. METHODS: Metabolic and elemental profiling of tumor and adjacent normal human kidney tissue from 50 patients with kidney cancer was undertaken using three different analytical methods. RESULTS: Five potential tissue biomarkers of kidney cancer were identified and quantified using with high-resolution nuclear magnetic resonance spectroscopy. The contents of selected chemical elements in tissues was analyzed using inductively coupled plasma optical emission spectrometry. Eleven mass spectral features differentiating between kidney cancer and normal tissues were detected using silver-109 nanoparticle enhanced steel target laser desorption/ionization mass spectrometry. CONCLUSIONS: Our results, derived from the combination of ICP-OES, LDI MS and 1H NMR methods, suggest that tissue biomarkers identified herein appeared to have great potential for use in clinical prognosis and/or diagnosis of kidney cancer.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Renales/metabolismo , Metabolómica/métodos , Anciano , Femenino , Humanos , Isótopos , Riñón , Neoplasias Renales/diagnóstico , Espectroscopía de Resonancia Magnética , Masculino , Análisis Multivariante , Plata
19.
Toxins (Basel) ; 13(1)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435302

RESUMEN

This study aimed to detect and quantify mycotoxins on building materials using innovative laser mass spectroscopy methods-silver-109/silver/gold nanoparticle-enhanced target surface-assisted laser desorption/ionisation mass spectrometry (109AgNPs, AgNPs and AuNPs SALDI). Results from SALDI-type methods were also compared with commonly used matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Standards of seven moulds mycotoxin in a final concentration of 100 µg/mL for patulin, citrinin, 3-nitropropionic acid, alternariol and 20 µg/mL for sterigmatocystin, cyclopiazonic acid, roquefortine C in the mixture were tested in pure solutions and after extraction from the plasterboards. Among the studied SALDI-type method, the lowest detection limits and the highest signal intensity of the mycotoxins tested were obtained with the use of 109AgNPs SALDI MS. The 109AgNPs method may be considered as an alternative to the currently most frequently used method MALDI MS and also liquid chromatography tandem mass spectrometry LC-MS/MS for mycotoxin determination. Future studies should attempt to use these methods for mass spectrometry imaging (MSI) to evaluate spatial distribution and depth of mycotoxin penetration into building materials.


Asunto(s)
Materiales de Construcción/análisis , Oro/química , Nanopartículas del Metal/química , Micotoxinas/química , Plata/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
20.
J Pharm Biomed Anal ; 193: 113752, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33197834

RESUMEN

Kidney cancer is one of the most frequently diagnosed cancers of the urinary tract in the world. Despite significant advances in kidney cancer treatment, no urine specific biomarker is currently used to guide therapeutic interventions. In an effort to address this knowledge gap, metabolic profiling of urine samples from 50 patients with kidney cancer and 50 healthy volunteers was undertaken using high-resolution proton nuclear magnetic resonance spectroscopy (1H NMR) and silver-109 nanoparticle enhanced steel target laser desorption/ionization mass spectrometry (109AgNPET LDI MS). Twelve potential urine biomarkers of kidney cancer were identified and quantified using one-dimensional (1D) 1H NMR metabolomics. Seven mass spectral features which differed significantly in abundance (p < 0.05) between kidney cancer patients and healthy volunteers were also detected using 109AgNPET-based laser desorption/ionization mass spectrometry (LDI MS). This work provides a framework to expand biomarker discovery that could be used as useful diagnostic or prognostic of kidney cancer progression.


Asunto(s)
Neoplasias Renales , Metaboloma , Humanos , Rayos Láser , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...