Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res Bull ; 198: 15-26, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37031792

RESUMEN

Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) have emerged as the signature injuries of the U.S. veterans who served in Iraq and Afghanistan, and frequently co-occur in both military and civilian populations. To better understand how fear learning and underlying neural systems might be altered after mTBI, we examined the acquisition of cued fear conditioning and its extinction along with brain morphology and dendritic plasticity in a mouse model of mTBI. To induce mTBI in adult male C57BL/6J mice, a lateral fluid percussive injury (LFP 1.7) was produced using a fluid pulse of 1.7 atmosphere force to the right parietal lobe. Behavior in LFP 1.7 mice was compared to behavior in mice from two separate control groups: mice subjected to craniotomy without LFP injury (Sham) and mice that did not undergo surgery (Unoperated). Following behavioral testing, neural endpoints (dendritic structural plasticity and neuronal volume) were assessed in the basolateral nucleus of the amygdala (BLA), which plays a critical sensory role in fear learning, and medial prefrontal cortex (mPFC), responsible for executive functions and inhibition of fear behaviors. No gross motor abnormalities or increased anxiety-like behaviors were observed in LFP or Sham mice after surgery compared to Unoperated mice. We found that all mice acquired fear behavior, assessed as conditioned freezing to auditory cue in a single session of 6 trials, and acquisition was similar across treatment groups. Using a linear mixed effects analysis, we showed that fear behavior decreased overall over 6 days of extinction training with no effect of treatment group across extinction days. However, a significant interaction was demonstrated between the treatment groups during within-session freezing behavior (5 trials per day) during extinction training. Specifically, freezing behavior increased across within-session extinction trials in LFP 1.7 mice, whereas freezing behavior in control groups did not change on extinction test days, reflecting a dissociation between within-trial and between-trial fear extinction. Additionally, LFP mice demonstrated bilateral increases in dendritic spine density in the BLA and decreases in dendritic complexity in the PFC. The translational implications are that individuals with TBI undergoing fear extinction therapy may demonstrate within-session aberrant learning that could be targeted for more effective treatment interventions.


Asunto(s)
Conmoción Encefálica , Ratones , Masculino , Animales , Extinción Psicológica , Miedo/fisiología , Ratones Endogámicos C57BL , Amígdala del Cerebelo/fisiología , Corteza Prefrontal
2.
J Neurotrauma ; 35(2): 210-225, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29017388

RESUMEN

The high rates of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) diagnoses encountered in recent years by the United States Veterans Affairs Healthcare System have increased public awareness and research investigation into these conditions. In this review, we analyze the neural mechanisms underlying the TBI/PTSD comorbidity. TBI and PTSD present with common neuropsychiatric symptoms including anxiety, irritability, insomnia, personality changes, and memory problems, and this overlap complicates diagnostic differentiation. Interestingly, both TBI and PTSD can be produced by overlapping pathophysiological changes that disrupt neural connections termed the "connectome." The neural disruptions shared by PTSD and TBI and the comorbid condition include asymmetrical white matter tract abnormalities and gray matter changes in the basolateral amygdala, hippocampus, and prefrontal cortex. These neural circuitry dysfunctions result in behavioral changes that include executive function and memory impairments, fear retention, fear extinction deficiencies, and other disturbances. Pathophysiological etiologies can be identified using experimental models of TBI, such as fluid percussion or blast injuries, and for PTSD, using models of fear conditioning, retention, and extinction. In both TBI and PTSD, there are discernible signs of neuroinflammation, excitotoxicity, and oxidative damage. These disturbances produce neuronal death and degeneration, axonal injury, and dendritic spine dysregulation and changes in neuronal morphology. In laboratory studies, various forms of pharmacological or psychological treatments are capable of reversing these detrimental processes and promoting axonal repair, dendritic remodeling, and neurocircuitry reorganization, resulting in behavioral and cognitive functional enhancements. Based on these mechanisms, novel neurorestorative therapeutics using anti-inflammatory, antioxidant, and anticonvulsant agents may promote better outcomes for comorbid TBI and PTSD.


Asunto(s)
Lesiones Traumáticas del Encéfalo/epidemiología , Lesiones Traumáticas del Encéfalo/fisiopatología , Trastornos por Estrés Postraumático/epidemiología , Trastornos por Estrés Postraumático/fisiopatología , Encéfalo/fisiopatología , Comorbilidad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA