Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Mol Metab ; 79: 101862, 2024 Jan.
Article En | MEDLINE | ID: mdl-38141849

BACKGROUND AND OBJECTIVES: Since white adipose tissue (WAT) lacks parasympathetic cholinergic innervation, the source of the acetylcholine (ACh) acting on white adipocyte cholinergic receptors is unknown. This study was designed to identify ACh-producing cells in mouse and human visceral WAT and to determine whether a non-neuronal cholinergic system becomes activated in obese inflamed WAT. METHODS: Mouse epididymal WAT (eWAT) and human omental fat were studied in normal and obese subjects. The expression of the key molecules involved in cholinergic signaling was evaluated by qRT-PCR and western blotting whereas their tissue distribution and cellular localization were investigated by immunohistochemistry, confocal microscopy and in situ hybridization. ACh levels were measured by liquid chromatography/tandem mass spectrometry. The cellular effects of ACh were assessed in cultured human multipotent adipose-derived stem cell (hMADS) adipocytes. RESULTS: In mouse eWAT, diet-induced obesity modulated the expression of key cholinergic molecular components and, especially, raised the expression of choline acetyltransferase (ChAT), the ACh-synthesizing enzyme, which was chiefly detected in interstitial macrophages, in macrophages forming crown-like structures (CLSs), and in multinucleated giant cells (MGCs). The stromal vascular fraction of obese mouse eWAT contained significantly higher ACh and choline levels than that of control mice. ChAT was undetectable in omental fat from healthy subjects, whereas it was expressed in a number of interstitial macrophages, CLSs, and MGCs from some obese individuals. In hMADS adipocytes stressed with tumor necrosis factor α, ACh, alone or combined with rivastigmine, significantly blunted monocyte chemoattractant protein 1 and interleukin 6 expression, it partially but significantly, restored adiponectin and GLUT4 expression, and promoted glucose uptake. CONCLUSIONS: In mouse and human visceral WAT, obesity induces activation of a macrophage-dependent non-neuronal cholinergic system that is capable of exerting anti-inflammatory and insulin-sensitizing effects on white adipocytes.


Adipose Tissue, White , Non-Neuronal Cholinergic System , Humans , Mice , Animals , Mice, Obese , Adipose Tissue, White/metabolism , Obesity/metabolism , Cholinergic Agents/metabolism
2.
Vaccines (Basel) ; 11(12)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38140200

Little is known about the long-term durability of the induced immune response in subjects with obesity, particularly in those with an abdominal distribution of adipose tissue. We evaluated SARS-CoV-2-specific antibody responses after BNT162b2 vaccine booster dose, comparing individuals with and without abdominal obesity (AO), discerning between individuals previously infected or not. IgG-TrimericS were measured in 511 subjects at baseline, on the 21st day after vaccine dose 1, and at 1, 3, 6, and 9 months from dose 2, and at 1 and 3 months following the booster dose. To detect SARS-CoV-2 infection, nucleocapsid antibodies were measured at baseline and at the end of the study. Multivariable linear regression evaluated the three-month difference in the absolute variation in IgG-TrimericS levels from booster dose, showing AO and SARS-CoV-2 infection status interactions (p = 0.016). Regardless of possible confounding factors and IgG-TrimericS levels at the booster dose, AO is associated with a higher absolute change in IgG-TrimericS in prior infected individuals (p = 0.0125). In the same regression model, no interaction is highlighted using BMI (p = 0.418). The robust response in the development of antibodies after booster dose, observed in people with AO and previous infection, may support the recommendations to administer a booster dose in this population group.

3.
Amino Acids ; 55(11): 1679-1685, 2023 Nov.
Article En | MEDLINE | ID: mdl-37768394

In the human body, the skin is one of the organs most affected by the aging process. Nutritional approaches aimed to counteract the age-induced decline of extracellular matrix (ECM) deposition could be a valuable tool to decrease the degenerative processes underlying skin aging. Here, we investigated the ability of a six-amino acid plus hyaluronic acid (6AAH) formulation enriched with tricarboxylic acid (TCA) intermediates to stimulate ECM gene expression. To this aim, human BJ fibroblasts were treated with 6AAH alone or plus succinate or malate alone or succinate plus malate (6AAHSM), and mRNA levels of several ECM markers were evaluated. 6AAHSM increased the expression of all the ECM markers significantly above 6AAH alone or plus only succinate or malate. Furthermore, in an in vitro oxidative damage model, 6AAHSM blunted the hydrogen peroxide-induced decline in ECM gene expression. Our data suggest that feeding cells with 6AAH enriched with TCAs could efficiently be employed as a non-pharmacological approach for counteracting skin aging.


Citric Acid Cycle , Malates , Humans , Malates/metabolism , Amino Acids/metabolism , Cells, Cultured , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Gene Expression , Succinates/metabolism
4.
Pharmacol Res ; 195: 106892, 2023 09.
Article En | MEDLINE | ID: mdl-37619907

Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.


Amino Acids , Metabolic Diseases , Animals , Humans , Thermogenesis , Adipose Tissue, Brown , Adipokines
5.
Front Neurosci ; 17: 1197208, 2023.
Article En | MEDLINE | ID: mdl-37397466

Mitochondrial dysfunction plays a key role in the aging process, and aging is a strong risk factor for neurodegenerative diseases or brain injury characterized by impairment of mitochondrial function. Among these, ischemic stroke is one of the leading causes of death and permanent disability worldwide. Pharmacological approaches for its prevention and therapy are limited. Although non-pharmacological interventions such as physical exercise, which promotes brain mitochondrial biogenesis, have been shown to exert preventive effects against ischemic stroke, regular feasibility is complex in older people, and nutraceutical strategies could be valuable alternatives. We show here that dietary supplementation with a balanced essential amino acid mixture (BCAAem) increased mitochondrial biogenesis and the endogenous antioxidant response in the hippocampus of middle-aged mice to an extent comparable to those elicited by treadmill exercise training, suggesting BCAAem as an effective exercise mimetic on brain mitochondrial health and disease prevention. In vitro BCAAem treatment directly exerted mitochondrial biogenic effects and induced antioxidant enzyme expression in primary mouse cortical neurons. Further, exposure to BCAAem protected cortical neurons from the ischemic damage induced by an in vitro model of cerebral ischemia (oxygen-glucose deprivation, OGD). BCAAem-mediated protection against OGD was abolished in the presence of rapamycin, Torin-1, or L-NAME, indicating the requirement of both mTOR and eNOS signaling pathways in the BCAAem effects. We propose BCAAem supplementation as an alternative to physical exercise to prevent brain mitochondrial derangements leading to neurodegeneration and as a nutraceutical intervention aiding recovery after cerebral ischemia in conjunction with conventional drugs.

6.
J Clin Med ; 12(13)2023 Jun 25.
Article En | MEDLINE | ID: mdl-37445292

BACKGROUND: Weight loss is associated with a reduction in all body compartments, including muscle mass (MM), and this effect produces a decrease in function and muscle strength. Our objective was to assess the impact of protein or amino acid supplements on MM loss in middle-aged men (age < 65 years) with severe obesity (BMI > 35 kg/m2) during weight loss. MATERIALS AND METHODS: We conducted a single-site randomized controlled trial (Clinicaltrials.gov NCT05143398) with 40 in-patient male subjects with severe obesity. Participants underwent an intervention program consisting of a low-calorie balanced diet and structured physical activity. They were randomly assigned to 4-week treatment groups: (1) control (CTR, N = 10), (2) protein (P, N = 10), (3) branched-chain amino acid (BCAA, N = 10), and (4) essential amino acid mixture with tricarboxylic acid cycle intermediates (PD-E07, N = 10) supplementation. RESULTS: Following 4 weeks of intervention, all groups showed similar reductions in body weight compared to baseline. When examining the delta values, a notable increase in muscle mass (MM) was observed in the PD-E07 intervention group [MM (kg): 2.84 ± 3.57; MM (%): 3.63 ± 3.14], in contrast to the CTR group [MM (kg): -2.46 ± 3.04; MM (%): -0.47 ± 2.28], with a statistical significance of p = 0.045 and p = 0.023, respectively. However, the MM values for the P group [MM (kg): -2.75 ± 5.98, p = 0.734; MM (%): -0.44 ± 4.02, p = 0.990] and the BCAA group [MM (kg): -1 ± 3.3, p = 0.734; MM (%): 0.34 ± 2.85, p = 0.956] did not exhibit a statistically significant difference when compared to the CTR group. CONCLUSIONS: Amino acid-based supplements may effectively mitigate the loss of MM typically observed during weight reduction. Further validation through large-scale studies is necessary.

7.
Article En | MEDLINE | ID: mdl-36982138

Over the past decades, a generalised increase in food portion sizes has probably contributed to the growing global obesity epidemic. Increasing awareness of appropriate portion sizes could contribute to reversing this trend through better control of calorie intake. In this study, a comparison of standard portion sizes in European countries for various food categories shows a wide variability of their importance for food, nutrient, and energy consumption according to government and institutional websites. On the other hand, the overall averages appear to be largely in line with the values indicated by the Italian Society of Human Nutrition, which is the most comprehensive and detailed document among those evaluated. The exceptions are milk and yoghurt, for which the reference portions in Europe are generally higher, and vegetables and legumes, for which portions are smaller than those reported in the Italian document. Moreover, the portion sizes of staple foods (e.g., pasta and potatoes) vary according to different food traditions. It is reasonable to consider that the creation of harmonised standard reference portions common to the European countries, based on international guidelines and scientific evidence, would significantly contribute to consumers' nutritional education and ability to make informed choices for a healthy diet.


Eating , Portion Size , Humans , Diet, Healthy , Energy Intake , Vegetables , Europe , Diet
8.
Eur J Prev Cardiol ; 30(8): 680-693, 2023 06 01.
Article En | MEDLINE | ID: mdl-36799940

AIMS: Human epicardial adipose tissue (EAT) plays a crucial role in the development and progression of coronary artery disease, atrial fibrillation, and heart failure. Microscopically, EAT is composed of adipocytes, nerve tissues, inflammatory, stromovascular, and immune cells. Epicardial adipose tissue is a white adipose tissue, albeit it also has brown fat-like or beige fat-like features. No muscle fascia divides EAT and myocardium; this allows a direct interaction and crosstalk between the epicardial fat and the myocardium. Thus, it might be a therapeutic target for pharmaceutical compounds acting on G-protein-coupled receptors, such as those for glucose-dependent insulinotropic polypeptide (GIP), glucagon (GCG), and glucagon-like peptide-1 (GLP-1), whose selective stimulation with innovative drugs has demonstrated beneficial cardiovascular effects. The precise mechanism of these novel drugs and their tissue and cellular target(s) need to be better understood. We evaluate whether human EAT expresses GIP, GCG, and GLP-1 receptors and whether their presence is related to EAT transcriptome. We also investigated protein expression and cell-type localization specifically for GIP receptor (GIPR) and glucagon receptor (GCGR). METHODS AND RESULTS: Epicardial adipose tissue samples were collected from 33 patients affected by cardiovascular diseases undergoing open heart surgery (90.9% males, age 67.2 ± 10.5 years mean ± SD). Microarray and immunohistochemistry analyses were performed. Microarray analysis showed that GIPR and GCGR messenger ribonucleic acids (mRNAs) are expressed in EAT, beyond confirming the previously found GLP-1 [3776 ± 1377 arbitrary unit (A.U.), 17.77 ± 14.91 A.U., and 3.41 ± 2.27 A.U., respectively]. The immunohistochemical analysis consistently indicates that GIPR and GCGR are expressed in EAT, mainly in macrophages, isolated, and in crown-like structures. In contrast, only some mature adipocytes of different sizes showed cytoplasmic immunostaining, similar to endothelial cells and pericytes in the capillaries and pre-capillary vascular structures. Notably, EAT GIPR is statistically associated with the low expression of genes involved in free fatty acid (FFA) oxidation and transport and those promoting FFA biosynthesis and adipogenesis (P < 0.01). Epicardial adipose tissue GCGR, in turn, is related to genes involved in FFA transport, mitochondrial fatty acid oxidation, and white-to-brown adipocyte differentiation, in addition to genes involved in the reduction of fatty acid biosynthesis and adipogenesis (P < 0.01). CONCLUSIONS: Having reported the expression of the GLP-1 receptor previously, here, we showed that GIPR and GCGR similarly present at mRNA and protein levels in human EAT, particularly in macrophages and partially adipocytes, suggesting these G-protein-coupled receptors as pharmacological targets on the ongoing innovative drugs, which seem cardiometabolically healthy well beyond their effects on glucose and body weight.


Human epicardial adipose tissue (EAT) is a unique and multifunctional fat compartment of the heart. Microscopically, EAT is composed of adipocytes, nerve tissues, inflammatory, stromovascular, and immune cells. Epicardial adipose tissue is a white adipose tissue, albeit it also has brown fat-like or beige fat-like features. No muscle fascia divides EAT and myocardium; this allows a direct interaction and crosstalk between the epicardial fat and the myocardium. Due to its distinctive transcriptome and functional proximity to the heart, EAT can play a key role in the development and progression of coronary artery disease, atrial fibrillation, and heart failure. Clinically, EAT, given its rapid metabolism and simple measurability, can be considered a novel therapeutic target, owing to its responsiveness to drugs with pleiotropic and clear beneficial cardiovascular effects such as the glucagon-like peptide-1 receptor (GLP-1R) agonists.Human EAT is found to express the genes encoding the receptors of glucose-dependent insulinotropic polypeptide receptor (GIPR), glucagon receptor (GCGR), and GLP-1. The immunohistochemistry indicates that GIP and GCG receptor proteins are present in EAT samples. Epicardial adipose tissue GIPR is inversely associated with genes involved in free fatty acid (FFA) oxidation and transport and with genes promoting FFA biosynthesis and adipogenesis. Epicardial adipose tissue GCGR is correlated with genes promoting FFA transport and activation for mitochondrial beta-oxidation and white-to-brown adipocyte differentiation and with genes reducing FFA biosynthesis and adipogenesis.As the myocardium relies mostly on FFAs as fuel and is in direct contiguity with EAT, these findings may have a great importance for the modulation of the myocardial activity and performance. Given the emerging use and cardiovascular effects of GLP-1R agonists, dual GIPR/GLP-1R agonists, and GLP-1R/GIPR/GCGR triagonists, we believe that pharmacologically targeting and potentially modulating organ-specific fat depots through G-protein­coupled receptors may produce beneficial cardiovascular and metabolic effects.


Glucagon-Like Peptide-1 Receptor , Glucagon , Male , Humans , Middle Aged , Aged , Female , Glucagon/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Endothelial Cells/metabolism , Adipose Tissue/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Glucagon-Like Peptide 1 , Receptors, G-Protein-Coupled/genetics , Glucose , Fatty Acids
9.
Trials ; 24(1): 104, 2023 Feb 09.
Article En | MEDLINE | ID: mdl-36759873

BACKGROUND: Specific blends of essential amino acids (EAA) containing a high percentage of branched-chain amino acids preserves mitochondrial metabolism and higher physical resistance in elderly mice, increasing their survival and improving physical performance and cognitive functions in malnourished elderly patients. However, no study has been yet done on patients with anorexia nervosa (AN) who regain weight with specialized intensive treatment. The present study aims to evaluate the efficacy of supplementation with EAA on the change in lean body mass (LBM) and other physical and psychological outcomes in patients with AN who are undergoing specialist treatment for eating disorders. METHODS: This is a 13-week randomized, double-blind, placebo-controlled study. Patients will be randomized to either a mixture of a complex blend of EAA and intermediates of the tricarboxylic acid (TCA) cycle (citrate, malate, succinate) supplementation (or placebo) upon admission at the intensive residential and day-hospital treatment for eating disorders. Ninety-two participants with AN aged 16-50 years will be recruited from a specialized intensive treatment of eating disorders. Double-blind assessment will be conducted at baseline (T0) and the end of the 13 weeks of treatment (T1). The study's primary aim is to evaluate the efficacy of supplementation with EAA and TCA intermediates on the change in lean body mass (LBM) with weight restoration in patients with AN who are undergoing specialist treatment for eating disorders. The secondary aims of the study are to assess the effect of dietary supplementation on physical fitness, weight restoration, modification of AN and general psychopathology, and psychosocial impairment. DISCUSSION: The study's results will inform researchers and clinicians on whether supplementing a mixture of EAA and TCA cycle intermediates will improve the increase of LBM and other important physical and psychological outcomes in patients with AN who regain weight with specialized intensive treatment. TRIAL REGISTRATION: NCT, NCT05290285. Registered on 22 March 2022.


Anorexia Nervosa , Feeding and Eating Disorders , Animals , Mice , Anorexia Nervosa/diagnosis , Anorexia Nervosa/therapy , Amino Acids , Double-Blind Method , Amino Acids, Essential , Hospitals , Treatment Outcome , Randomized Controlled Trials as Topic
10.
Cardiovasc Res ; 119(4): 982-997, 2023 05 02.
Article En | MEDLINE | ID: mdl-36626303

AIMS: Heart failure with reduced ejection fraction (HFrEF) is a leading cause of mortality worldwide, requiring novel therapeutic and lifestyle interventions. Metabolic alterations and energy production deficit are hallmarks and thereby promising therapeutic targets for this complex clinical syndrome. We aim to study the molecular mechanisms and effects on cardiac function in rodents with HFrEF of a designer diet in which free essential amino acids-in specifically designed percentages-substituted for protein. METHODS AND RESULTS: Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricle (LV) pressure overload or sham surgery. Whole-body glucose homeostasis was studied with glucose tolerance test, while myocardial dysfunction and fibrosis were measured with echocardiogram and histological analysis. Mitochondrial bioenergetics and morphology were investigated with oxygen consumption rate measurement and electron microscopy evaluation. Circulating and cardiac non-targeted metabolite profiles were analyzed by ultrahigh performance liquid chromatography-tandem mass spectroscopy, while RNA-sequencing was used to identify signalling pathways mainly affected. The amino acid-substituted diet shows remarkable preventive and therapeutic effects. This dietary approach corrects the whole-body glucose metabolism and restores the unbalanced metabolic substrate usage-by improving mitochondrial fuel oxidation-in the failing heart. In particular, biochemical, molecular, and genetic approaches suggest that renormalization of branched-chain amino acid oxidation in cardiac tissue, which is suppressed in HFrEF, plays a relevant role. Beyond the changes of systemic metabolism, cell-autonomous processes may explain at least in part the diet's cardioprotective impact. CONCLUSION: Collectively, these results suggest that manipulation of dietary amino acids, and especially essential amino acids, is a potential adjuvant therapeutic strategy to treat systolic dysfunction and HFrEF in humans.


Heart Failure , Ventricular Dysfunction, Left , Humans , Mice , Animals , Myocardium/metabolism , Stroke Volume , Amino Acids, Essential/metabolism , Diet
11.
Biosci Biotechnol Biochem ; 86(9): 1255-1261, 2022 Aug 24.
Article En | MEDLINE | ID: mdl-35793559

The deterioration of the skin is caused by dermatological disorders, environmental conditions, and aging processes. One incisive strategy for supervising the skin aging process is implementing healthy nutrition, preserving a balanced diet, and a good supply of food supplements. Here, we compared H-Pro-Hyp-OH peptide, hydrolyzed collagen, and an original mixture of six amino acids (we named 6aa)-including glycine, l-alanine, l-proline, l-valine, l-leucine, and l-lysine-effects on the production of extracellular matrix (ECM) components, particularly the elastin, fibronectin, collagen 1, and collagen 4. Treatment of BJ human skin fibroblasts with the 6aa mixture upregulated elastin, fibronectin, and collagen 1 gene expression, without affecting the expression of anti-reactive oxygen species enzymes. Moreover, the mammalian target of rapamycin (mTOR) signaling pathway seems to be involved, at least in part. Collectively, these results suggest that the six amino acid mixture exerts beneficial effects in human skin fibroblasts.


Amino Acids , Elastin , Amino Acids/metabolism , Amino Acids/pharmacology , Cells, Cultured , Collagen/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Elastin/genetics , Elastin/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Fibronectins/metabolism , Gene Expression , Humans , Skin/metabolism
12.
Nutr Metab Cardiovasc Dis ; 32(6): 1571-1582, 2022 06.
Article En | MEDLINE | ID: mdl-35461749

BACKGROUND AND AIMS: Overweight and obesity are major risk factors for degenerative diseases, including cardiometabolic disorders and cancer. Research on fat and fatty acids' type is attracting less attention than that on carbohydrates. High adherence to a Mediterranean diet is associated with a better prognosis. One characteristic of the Mediterranean diet is extra-virgin olive oil (EVOO) as the foremost source of dietary fat. EVOO is different from other vegetable oils because it contains peculiar "minor" components, mainly phenolic in nature. Even though olive oil is highly caloric, unrestricted use of olive oil in the PREDIMED trial did not result in weight gain. We sought to study the effects of EVOO in an appropriate mouse model of increased body weight. Furthermore, we explored the biochemical and metabolomic responses to EVOO consumption. METHODS AND RESULTS: C57BL/6N male mice were weight-matched and fed ad libitum with the following diets, for 16 weeks: 1) saturated fatty acid diet (SFA) or 2) extra-virgin olive oil diet (EVOO), a custom-prepared diet, isocaloric compared to SFA, in which 82% of fat was replaced by high (poly)phenol EVOO. We evaluated glucose homeostasis, serum biochemistry and plasma metabolomics, in addition to cardiac and hepatic gene profile, and mitochondrial respiration rate. CONCLUSION: Replacing saturated fatty acids (e.g. lard) with EVOO translates into moderate yet beneficial cardiometabolic and hepatic effects. Future research will further clarify the mechanisms of action of EVOO (poly)phenols and their role in a balanced diet.


Cardiovascular Diseases , Diet, Mediterranean , Animals , Cardiovascular Diseases/genetics , Cardiovascular Diseases/prevention & control , Fatty Acids , Humans , Male , Mice , Mice, Inbred C57BL , Olive Oil , Phenols , Rodentia
13.
Mol Metab ; 60: 101478, 2022 06.
Article En | MEDLINE | ID: mdl-35367410

OBJECTIVE: Profound metabolic alterations characterize cancer development and, beyond glucose addiction, amino acid (AA) dependency is now recognized as a hallmark of tumour growth. Therefore, targeting the metabolic addiction of tumours by reprogramming their substrate utilization is an attractive therapeutic strategy. We hypothesized that a dietary approach targeted to stimulate oxidative metabolism could reverse the metabolic inflexibility of tumours and represent a proper adjuvant therapy. METHODS: We measured tumour development in xenografted mice fed with a designer, casein-deprived diet enriched in free essential amino acids (EAAs; SFA-EAA diet), or two control isocaloric, isolipidic, and isonitrogenous diets, identical to the SFA-EAA diet except for casein presence (SFA diet), or casein replacement by the free AA mixture designed on the AA profile of casein (SFA-CAA diet). Moreover, we investigated the metabolic, biochemical, and molecular effects of two mixtures that reproduce the AA composition of the SFA-EAA diet (i.e., EAAm) and SFA-CAA diet (i.e., CAAm) in diverse cancer and non-cancer cells. RESULTS: The SFA-EAA diet reduced tumour growth in vivo, promoted endoplasmic reticulum (ER) stress, and inhibited mechanistic/mammalian target of rapamycin (mTOR) activity in the tumours. Accordingly, in culture, the EAAm, but not the CAAm, activated apoptotic cell death in cancer cells without affecting the survival and proliferation of non-cancer cells. The EAAm increased branched-chain amino acid (BCAA) oxidation and decreased glycolysis, ATP levels, redox potential, and intracellular content of selective non-essential amino acids (NEAA) in cancer cells. The EAAm-induced NEAA starvation activated the GCN2-ATF4 stress pathway, leading to ER stress, mTOR inactivation, and apoptosis in cancer cells, unlike non-cancer cells. CONCLUSION: Together, these results confirm the efficacy of specific EAA mixtures in promoting cancer cells' death and suggest that manipulation of dietary EAA content and profile could be a valuable support to the standard chemotherapy for specific cancers.


Amino Acids , Neoplasms , Amino Acids/metabolism , Animals , Caseins , Diet , Endoplasmic Reticulum Stress , Mammals/metabolism , Mice , TOR Serine-Threonine Kinases/metabolism
14.
Exp Eye Res ; 219: 109060, 2022 06.
Article En | MEDLINE | ID: mdl-35390334

Corneal disorders are frequent, involving most diabetic patients; among its manifestations, they include delayed wound healing. Since maintenance of mitochondrial homeostasis is fundamental for the cell, stimulation of mitochondrial biogenesis represents a unique therapeutic tool for preventing and treating disorders with a deficit in energy metabolism. We have recently demonstrated that a branched-chain amino acid (BCAA)-enriched mixture (BCAAem) supported mitochondrial biogenesis in cardiac and skeletal muscle, reduced liver damage caused by alcohol, and prevented the doxorubicin-dependent mitochondrial damage in cardiomyocytes. The present study aimed to investigate a new amino acid mixture, named six amino acids (6AA), to promote corneal epithelial wound healing by regulating mitochondrial biogenesis. A murine epithelium cell line (TKE2) exposed to this mixture showed increased mitochondrial biogenesis markers, fibronectin 1 (Fn1) and integrin beta 1 (ITGB1) involved in extracellular matrix synthesis and cell migration. Most importantly, the 6AA mixture completely restored the wound in scratch assays, confirming the potential of this new formula in eye disorders like keratopathy. Moreover, our results demonstrate for the first time that peroxisome proliferator-receptor γ coactivator 1 α (PGC-1α) is expressed in TKE2 cells, which controls mitochondrial function and corneal repair process. These results could be relevant for the treatment mainly focused on corneal re-epithelialisation.


Amino Acids , Corneal Injuries , Amino Acids, Branched-Chain/metabolism , Animals , Corneal Injuries/drug therapy , Fibronectins , Humans , Mice , Organelle Biogenesis , Wound Healing
15.
Eat Weight Disord ; 27(5): 1575-1584, 2022 Jun.
Article En | MEDLINE | ID: mdl-34664216

Many systems for classifying food products to adequately predict lower all-cause morbidity and mortality have been proposed as front-of-pack (FOP) nutritional labels. Although the efforts and advances that these systems represent for public health must be appreciated, as scientists involved in nutrition research and belonging to diverse Italian nutrition scientific societies, we would like to draw stakeholders' attention to the fact that some FOP labels risk being not correctly informative to consumers' awareness of nutritional food quality. The European Commission has explicitly called for such a nutrition information system to be part of the European "strategy on nutrition, overweight and obesity-related issues" to "facilitate consumer understanding of the contribution or importance of the food to the energy and nutrient content of a diet". Some European countries have adopted the popular French proposal Nutri-Score. However, many critical limits and inadequacies have been identified in this system. As an alternative, we endorse a new enriched informative label-the NutrInform Battery-promoted by the Italian Ministry of Health and deeply studied by the Center for Study and Research on Obesity, Milan University. Therefore, the present position paper limits comparing these two FOP nutritional labels, focusing on the evidence suggesting that the NutrInform Battery can help consumers better than the Nutri-Score system to understand nutritional information, potentially improving dietary choices. LEVEL OF EVIDENCE: II. Evidence was obtained from well-designed controlled trials without randomization.


Consumer Behavior , Food Labeling , Choice Behavior , Food Preferences , Humans , Obesity/prevention & control
16.
J Clin Med ; 10(15)2021 Jul 31.
Article En | MEDLINE | ID: mdl-34362203

Musculoskeletal pain conditions are age-related, leading contributors to chronic pain and pain-related disability, which are expected to rise with the rapid global population aging. Current medical treatments provide only partial relief. Furthermore, non-steroidal anti-inflammatory drugs (NSAIDs) and opioids are effective in young and otherwise healthy individuals but are often contraindicated in elderly and frail patients. As a result of its favorable safety and tolerability record, paracetamol has long been the most common drug for treating pain. Strikingly, recent reports questioned its therapeutic value and safety. This review aims to present guideline recommendations. Paracetamol has been assessed in different conditions and demonstrated therapeutic efficacy on both acute and chronic pain. It is active as a single agent and is additive or synergistic with NSAIDs and opioids, improving their efficacy and safety. However, a lack of significant efficacy and hepatic toxicity have also been reported. Fast dissolving formulations of paracetamol provide superior and more extended pain relief that is similar to intravenous paracetamol. A dose reduction is recommended in patients with liver disease or malnourished. Genotyping may improve efficacy and safety. Within the current trend toward the minimization of opioid analgesia, it is consistently included in multimodal, non-opioid, or opioid-sparing therapies. Paracetamol is being recommended by guidelines as a first or second-line drug for acute pain and chronic pain, especially for patients with limited therapeutic options and for the elderly.

17.
Curr Opin Clin Nutr Metab Care ; 24(1): 88-95, 2021 01.
Article En | MEDLINE | ID: mdl-33060458

PURPOSE OF REVIEW: Both restriction and supplementation of specific amino acids or branched-chain amino acids (BCAAs) are described to improve metabolic homeostasis, energy balance, and health span. This review will discuss the recent findings of the role of amino acid supplements in the regulation of mitochondrial health. RECENT FINDINGS: A mixture of essential amino acids (EAAs), BCAA enriched mixture, was found to extend healthy life span in elderly mice and prevent multiple diseases associated with an energy deficit, similarly to caloric restriction or fasting-mimicking diets. A growing body of evidence highlights mitochondria as the central target of this supplement: it promotes mitochondrial biogenesis and the activation of antioxidant defence systems in different physiological (e.g., exercise or ageing) or pathological conditions (e.g., sarcopenia, muscular dystrophy, liver steatosis, or impaired cognition). Based on these results, new formulas have been created enriched with Krebs cycle substrates, behaving more efficiently than BCAA enriched mixture. SUMMARY: EAA-BCAA balanced supplements might be valuable not only for healthy individuals undergoing to energy deficit (e.g., athletes) during strenuous exercise or training but also against diseases characterized by a dysregulated catabolic state or mitochondrial dysfunction, such as age-related disorders. The associated mechanistic processes should be identified as potential pharmacological targets.


Amino Acids, Branched-Chain , Amino Acids, Essential , Amino Acids, Branched-Chain/metabolism , Animals , Energy Metabolism , Humans , Mice , Mitochondria/metabolism , Oxidative Stress
18.
Diabetes ; 69(11): 2324-2339, 2020 11.
Article En | MEDLINE | ID: mdl-32778569

Reduced activation of energy metabolism increases adiposity in humans and other mammals. Thus, exploring dietary and molecular mechanisms able to improve energy metabolism is of paramount medical importance because such mechanisms can be leveraged as a therapy for obesity and related disorders. Here, we show that a designer protein-deprived diet enriched in free essential amino acids can 1) promote the brown fat thermogenic program and fatty acid oxidation, 2) stimulate uncoupling protein 1 (UCP1)-independent respiration in subcutaneous white fat, 3) change the gut microbiota composition, and 4) prevent and reverse obesity and dysregulated glucose homeostasis in multiple mouse models, prolonging the healthy life span. These effects are independent of unbalanced amino acid ratio, energy consumption, and intestinal calorie absorption. A brown fat-specific activation of the mechanistic target of rapamycin complex 1 seems involved in the diet-induced beneficial effects, as also strengthened by in vitro experiments. Hence, our results suggest that brown and white fat may be targets of specific amino acids to control UCP1-dependent and -independent thermogenesis, thereby contributing to the improvement of metabolic health.


Amino Acids/administration & dosage , Dietary Proteins/administration & dosage , Energy Metabolism/physiology , Homeostasis , Obesity/diet therapy , Adipokines/metabolism , Animal Feed/analysis , Animals , Body Composition , Diet , Dietary Proteins/analysis , Energy Metabolism/drug effects , Glucose/metabolism , Longevity , Mice , Mice, Inbred C57BL
19.
Nutrients ; 12(2)2020 Jan 21.
Article En | MEDLINE | ID: mdl-31973180

Anthracycline anticancer drugs, such as doxorubicin (DOX), can induce cardiotoxicity supposed to be related to mitochondrial damage. We have recently demonstrated that a branched-chain amino acid (BCAA)-enriched mixture (BCAAem), supplemented with drinking water to middle-aged mice, was able to promote mitochondrial biogenesis in cardiac and skeletal muscle. To maximally favor and increase oxidative metabolism and mitochondrial function, here we tested a new original formula, composed of essential amino acids, tricarboxylic acid cycle precursors and co-factors (named 5), in HL-1 cardiomyocytes and mice treated with DOX. We measured mitochondrial biogenesis, oxidative stress, and BCAA catabolic pathway. Moreover, the molecular relevance of endothelial nitric oxide synthase (eNOS) and mechanistic/mammalian target of rapamycin complex 1 (mTORC1) was studied in both cardiac tissue and HL-1 cardiomyocytes. Finally, the role of Krüppel-like factor 15 (KLF15), a critical transcriptional regulator of BCAA oxidation and eNOS-mTORC1 signal, was investigated. Our results demonstrate that the 5 mixture prevents the DOX-dependent mitochondrial damage and oxidative stress better than the previous BCAAem, implying a KLF15/eNOS/mTORC1 signaling axis. These results could be relevant for the prevention of cardiotoxicity in the DOX-treated patients.


Amino Acids/administration & dosage , Cardiotoxicity/prevention & control , Cell Respiration/drug effects , Food, Formulated , Mitochondria/drug effects , Oxidative Stress/drug effects , Amino Acids, Branched-Chain/metabolism , Animals , Dietary Supplements , Doxorubicin/adverse effects , Mice , Myocytes, Cardiac/drug effects , Organelle Biogenesis , Signal Transduction
20.
EMBO Mol Med ; 12(1): e11019, 2020 01 09.
Article En | MEDLINE | ID: mdl-31793167

Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation. The type 2 IGF receptor (IGF2R) modulates circulating and tissue levels of IGF2 by targeting it to lysosomes for degradation. We found that IGF2R and the store-operated Ca2+ channel CD20 share a common hydrophobic binding motif that stabilizes their association. Silencing CD20 decreased myoblast differentiation, whereas blockade of IGF2R increased proliferation and differentiation in myoblasts via the calmodulin/calcineurin/NFAT pathway. Remarkably, anti-IGF2R induced CD20 phosphorylation, leading to the activation of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) and removal of intracellular Ca2+ . Interestingly, we found that IGF2R expression was increased in dystrophic skeletal muscle of human DMD patients and mdx mice. Blockade of IGF2R by neutralizing antibodies stimulated muscle regeneration, induced force recovery and normalized capillary architecture in dystrophic mdx mice representing an encouraging starting point for the development of new biological therapies for DMD.


Muscle, Skeletal/growth & development , Muscular Dystrophy, Duchenne/drug therapy , Receptor, IGF Type 2/antagonists & inhibitors , Regeneration , Animals , Binding Sites , Child , Humans , Mice , Mice, Inbred mdx , Myoblasts , Young Adult
...