Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 11: 1399225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962283

RESUMEN

Periostin is a matricellular protein encoded by the POSTN gene that is alternatively spliced to produce ten different periostin isoforms with molecular weights ranging from 78 to 91 kDa. It is known to promote fibrillogenesis, organize the extracellular matrix, and bind integrin-receptors to induce cell signaling. As well as being a key component of the wound healing process, it is also known to participate in the pathogenesis of different diseases including atopic dermatitis, asthma, and cancer. In both health and disease, the functions of the different periostin isoforms are largely unknown. The ability to precisely determine the isoform profile of a given human sample is fundamental for characterizing their functional significance. Identification of periostin isoforms is most often carried out at the transcriptional level using RT-PCR based approaches, but due to high sequence homogeneity, identification on the protein level has always been challenging. Top-down proteomics, where whole proteins are measured by mass spectrometry, offers a fast and reliable method for isoform identification. Here we present a fully developed top-down mass spectrometry assay for the characterization of periostin splice isoforms at the protein level.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38977230

RESUMEN

Periostin is a matricellular protein known to be alternatively spliced to produce ten isoforms with a molecular weight of 78-91 kDa. Within the extracellular matrix, periostin attaches to cell surfaces to induce signaling via integrin-binding and actively participates in fibrillogenesis, orchestrating the arrangement of collagen in the extracellular environment. In atopic diseases such as atopic dermatitis (AD) and asthma, periostin is known to participate in driving the disease-causing type 2 inflammation. The periostin isoforms expressed in these diseases and the implication of the alternative splicing events are unknown. Here, we present two universal assays to map the expression of periostin isoforms at the mRNA (RT-qPCR) and protein (PRM-based mass spectrometry) levels. We use these assays to study the splicing profile of periostin in AD lesions as well as in in vitro models of AD and asthma. In these conditions, periostin displayed overexpression with isoforms 3 and 5 standing out as highly overexpressed. Notably, isoforms 9 and 10 exhibited a divergent pattern relative to the remaining isoforms. Isoforms 9 and 10 are often overlooked in periostin research and this paper presents the first evidence of their expression at the protein level. This underlines the necessity to include isoforms 9 and 10 in future research addressing periostin splice isoforms. The assays presented in this paper hold the potential to improve our insight into the splicing profile of periostin in tissues and diseases of interest. The application of these assays to AD lesions and in vitro models demonstrated their potential for identifying isoforms of particular significance, warranting a further in-depth investigation.

3.
Biochemistry ; 62(19): 2803-2815, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37704583

RESUMEN

Human periostin is a 78-91 kDa matricellular protein implicated in extracellular matrix remodeling, tumor development, metastasis, and inflammatory diseases like atopic dermatitis, psoriasis, and asthma. The protein consists of six domains, including an N-terminal Cys-rich CROPT domain, four fasciclin-1 domains, and a C-terminal domain. The exons encoding the C-terminal domain may be alternatively spliced by shuffling four exons, generating ten variants of unknown function. Here, we investigate the structure and interactome of the full-length variant of the C-terminal domain with no exons spliced out. The structural analysis showed that the C-terminal domain lacked a tertiary structure and was intrinsically disordered. In addition, we show that the motif responsible for heparin-binding is in the conserved very C-terminal part of periostin. Pull-down confirmed three known interaction partners and identified an additional 140 proteins, among which nine previously have been implicated in atopic dermatitis. Based on our findings, we suggest that the C-terminal domain of periostin facilitates interactions between connective tissue components in concert with the four fasciclin domains.


Asunto(s)
Moléculas de Adhesión Celular , Dermatitis Atópica , Proteínas Intrínsecamente Desordenadas , Humanos , Exones , Proteínas Intrínsecamente Desordenadas/genética , Moléculas de Adhesión Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...