Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Mol Oral Microbiol ; 39(2): 40-46, 2024 Apr.
Article En | MEDLINE | ID: mdl-37459655

The oral organism Tannerella forsythia is auxotrophic for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc). It survives in the oral cavity by scavenging MurNAc- and MurNAc-linked peptidoglycan fragments (muropeptides) secreted by co-habiting bacteria such as Fusobacterium nucleatum with which it forms synergistic biofilms. Muropeptides, MurNAc-l-Ala-d-isoGln (MDP, muramyl dipeptide) and d-γ-glutamyl-meso-DAP (iE-DAP dipeptide), are strong immunostimulatory molecules that activate nucleotide oligomerization domain (NOD)-like innate immune receptors and induce the expression of inflammatory cytokines and antimicrobial peptides. In this study, we utilized an in vitro T. forsythia-F. nucleatum co-culture model to determine if T. forsythia can selectively scavenge NOD ligands from the environment and impact NOD-mediated inflammation. The results showed that NOD-stimulatory molecules were secreted by F. nucleatum in the spent culture broth, which subsequently induced cytokine and antimicrobial peptide expression in oral epithelial cells. In the spent broth from T. forsythia-F. nucleatum co-cultures, the NOD-stimulatory activity was significantly reduced. These data indicated that F. nucleatum releases NOD2-stimulatory muropeptides in the environment, and T. forsythia can effectively scavenge the muropeptides released by co-habiting bacteria to dampen NOD-mediated host responses. This proof-of-principle study demonstrated that peptidoglycan scavenging by T. forsythia can impact the innate immunity of oral epithelium by dampening NOD activation.


Fusobacterium nucleatum , Tannerella forsythia , Tannerella forsythia/metabolism , Fusobacterium nucleatum/physiology , Peptidoglycan , Mouth , Epithelial Cells/metabolism , Cytokines/metabolism
2.
Cell Stem Cell ; 30(9): 1179-1198.e7, 2023 09 07.
Article En | MEDLINE | ID: mdl-37683603

Osteoarthritis is a degenerative joint disease that causes pain, degradation, and dysfunction. Excessive canonical Wnt signaling in osteoarthritis contributes to chondrocyte phenotypic instability and loss of cartilage homeostasis; however, the regulatory niche is unknown. Using the temporomandibular joint as a model in multiple species, we identify Lgr5-expressing secretory cells as forming a Wnt inhibitory niche that instruct Wnt-inactive chondroprogenitors to form the nascent synovial joint and regulate chondrocyte lineage and identity. Lgr5 ablation or suppression during joint development, aging, or osteoarthritis results in depletion of Wnt-inactive chondroprogenitors and a surge of Wnt-activated, phenotypically unstable chondrocytes with osteoblast-like properties. We recapitulate the cartilage niche and create StemJEL, an injectable hydrogel therapy combining hyaluronic acid and sclerostin. Local delivery of StemJEL to post-traumatic osteoarthritic jaw and knee joints in rabbit, rat, and mini-pig models restores cartilage homeostasis, chondrocyte identity, and joint function. We provide proof of principal that StemJEL preserves the chondrocyte niche and alleviates osteoarthritis.


Chondrocytes , Osteoarthritis , Swine , Animals , Rabbits , Rats , Swine, Miniature , Cartilage , Aging , Receptors, G-Protein-Coupled
3.
Orthod Craniofac Res ; 26 Suppl 1: 131-141, 2023 Dec.
Article En | MEDLINE | ID: mdl-36891610

OBJECTIVE: The temporomandibular joint (TMJ) is anatomically comprised of the mandibular condylar cartilage (CC) lined with fibrocartilaginous superficial zone and is crucial for eating and dental occlusion. TMJ osteoarthritis (OA) leads to pain, joint dysfunction and permanent loss of cartilage tissue. However, there are no drugs clinically available that ameliorate OA and little is known about global profiles of genes that contribute to TMJ OA. Furthermore, animal models that recapitulate the complexity of signalling pathways contributing to OA pathogenesis are crucial for designing novel biologics that thwart OA progression. We have previously developed a New Zealand white rabbit TMJ injury model that demonstrates CC degeneration. Here, we performed genome-wide profiling to identify new signalling pathways critical for cellular functions during OA pathology. MATERIALS AND METHODS: Temporomandibular joint OA was surgically induced in New Zealand white rabbits. Three months following injury, we performed global gene expression profiling of the TMJ condyle. RNA samples from TMJ condyles were subjected to sequencing. After raw RNA-seq data were mapped to relevant genomes, differential expression was analysed with DESeq2. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted. RESULTS/CONCLUSIONS: Our study revealed multiple pathways altered during TMJ OA induction including the Wnt, Notch and PI3K-Akt signalling pathways. We demonstrate an animal model that recapitulates the complexity of the cues and signals underlying TMJ OA pathogenesis, which is essential for developing and testing novel pharmacologic agents to treat OA.


Cartilage, Articular , Osteoarthritis , Rabbits , Animals , RNA-Seq , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Temporomandibular Joint , Mandibular Condyle/metabolism , Cartilage/metabolism , Cartilage/pathology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Cartilage, Articular/metabolism
4.
FASEB J ; 34(3): 4445-4461, 2020 03.
Article En | MEDLINE | ID: mdl-32030828

Temporomandibular joint osteoarthritis (TMJ OA) leads to permanent cartilage destruction, jaw dysfunction, and compromises the quality of life. However, the pathological mechanisms governing TMJ OA are poorly understood. Unlike appendicular articular cartilage, the TMJ has two distinct functions as the synovial joint of the craniofacial complex and also as the site for endochondral jaw bone growth. The established dogma of endochondral bone ossification is that hypertrophic chondrocytes undergo apoptosis, while invading vasculature with osteoprogenitors replace cartilage with bone. However, contemporary murine genetic studies support the direct differentiation of chondrocytes into osteoblasts and osteocytes in the TMJ. Here we sought to characterize putative vasculature and cartilage to bone transdifferentiation using healthy and diseased TMJ tissues from miniature pigs and humans. During endochondral ossification, the presence of fully formed vasculature expressing CD31+ endothelial cells and α-SMA+ vascular smooth muscle cells were detected within all cellular zones in growing miniature pigs. Arterial, endothelial, venous, angiogenic, and mural cell markers were significantly upregulated in miniature pig TMJ tissues relative to donor matched knee meniscus fibrocartilage tissue. Upon surgically creating TMJ OA in miniature pigs, we discovered increased vasculature and putative chondrocyte to osteoblast transformation dually marked by COL2 and BSP or RUNX2 within the vascular bundles. Pathological human TMJ tissues also exhibited increased vasculature, while isolated diseased human TMJ cells exhibited marked increased in vasculature markers relative to control 293T cells. Our study provides evidence to suggest that the TMJ in higher order species are in fact vascularized. There have been no reports of cartilage to bone transdifferentiation or vasculature in human-relevant TMJ OA large animal models or in human TMJ tissues and cells. Therefore, these findings may potentially alter the clinical management of TMJ OA by defining new drugs that target angiogenesis or block the cartilage to bone transformation.


Cell Transdifferentiation/physiology , Chondrocytes/cytology , Osteoarthritis/diagnosis , Osteoarthritis/therapy , Osteoblasts/cytology , Animals , Apoptosis , Cells, Cultured , Chondrocytes/metabolism , Dogs , Enzyme-Linked Immunosorbent Assay , Female , HEK293 Cells , Humans , Immunohistochemistry , In Situ Hybridization , In Vitro Techniques , Male , Osteoarthritis/metabolism , Osteoblasts/metabolism , Osteogenesis/genetics , Osteogenesis/physiology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Software , Swine , Temporomandibular Joint Disorders/diagnosis , Temporomandibular Joint Disorders/metabolism , Temporomandibular Joint Disorders/therapy
5.
PLoS One ; 14(10): e0223244, 2019.
Article En | MEDLINE | ID: mdl-31603905

The temporomandibular joint (TMJ) is a fibrocartilaginous tissue critical for chewing and speaking. In patients with temporomandibular disorders (TMDs), permanent tissue loss can occur. Recapitulating the complexity of TMDs in animal models is difficult, yet critical for the advent of new therapies. Synovial fluid from diseased human samples revealed elevated levels of tumor necrosis factor alpha (TNF-alpha). Here, we propose to recapitulate these findings in mice by subjecting murine TMJs with TNF-alpha or CFA (Complete Freund's Adjuvant) in mandibular condyle explant cultures and by local delivery in vivo using TMJ intra-articular injections. Both TNF-alpha and CFA delivery to whole mandibular explants and in vivo increased extracellular matrix deposition and increased cartilage thickness, while TNF-alpha treated explants had increased expression of inflammatory cytokines and degradative enzymes. Moreover, the application of TNF-alpha or CFA in both models reduced cell number. CFA delivery in vivo caused soft tissue inflammation, including pannus formation. Our work provides two methods of chemically induced TMJ inflammatory arthritis through a condyle explant model and intra-articular injection model that replicate findings seen in synovial fluid of human patients, which can be used for further studies delineating the mechanisms underlying TMJ pathology.


Arthritis, Experimental/immunology , Cartilage, Articular/immunology , Extracellular Matrix/immunology , Temporomandibular Joint Disorders/immunology , Temporomandibular Joint/immunology , ADAMTS5 Protein/genetics , ADAMTS5 Protein/immunology , Adolescent , Adult , Aged , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/genetics , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Collagen Type II/genetics , Collagen Type II/immunology , Collagen Type X/genetics , Collagen Type X/immunology , Disease Models, Animal , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Female , Freund's Adjuvant/administration & dosage , Gene Expression/drug effects , Gene Expression/immunology , Humans , Interleukins/genetics , Interleukins/immunology , Male , Mandibular Condyle/drug effects , Mandibular Condyle/immunology , Mandibular Condyle/pathology , Mice , Mice, Inbred C57BL , Middle Aged , Synovial Fluid/immunology , Temporomandibular Joint/drug effects , Temporomandibular Joint/pathology , Temporomandibular Joint Disorders/genetics , Temporomandibular Joint Disorders/pathology , Tissue Culture Techniques , Tumor Necrosis Factor-alpha/administration & dosage
6.
Appl Environ Microbiol ; 84(1)2018 01 01.
Article En | MEDLINE | ID: mdl-29079615

Tannerella forsythia and Fusobacterium nucleatum are dental plaque bacteria implicated in the development of periodontitis. These two species have been shown to form synergistic biofilms and have been found to be closely associated in dental plaque biofilms. A number of genetic loci for TonB-dependent membrane receptors (TDR) for glycan acquisition, with many existing in association with genes coding for enzymes involved in the breakdown of complex glycans, have been identified in T. forsythia In this study, we focused on a locus, BFO_0186-BFO_0188, that codes for a predicted TDR-SusD transporter along with a putative ß-glucan hydrolyzing enzyme (BFO_0186). This operon is located immediately downstream of a 2-gene operon that codes for a putative stress-responsive extracytoplasmic function (ECF) sigma factor and an anti-sigma factor. Here, we show that BFO_0186 expresses a ß-glucanase that cleaves glucans with ß-1,6 and ß-1,3 linkages. Furthermore, the BFO_0186-BFO_0188 locus is upregulated, with an induction of ß-glucanase activity, in cobiofilms of T. forsythia and F. nucleatum The ß-glucanase activity in mixed biofilms in turn leads to an enhanced hydrolysis of ß-glucans and release of glucose monomers and oligomers as nutrients for F. nucleatum In summary, our study highlights the role of T. forsythia ß-glucanase expressed by the asaccharolytic oral bacterium T. forsythia in the development of T. forsythia-F. nucleatum mixed species biofilms, and suggest that dietary ß-glucans might contribute in plaque development and periodontal disease pathogenesis.IMPORTANCE The development of dental plaque biofilm is a complex process in which metabolic, chemical and physical interactions between bacteria take a central role. Previous studies have shown that the dental pathogens T. forsythia and F. nucleatum form synergistic biofilms and are closely associated in human dental plaque. In this study, we show that ß-glucanase from the periodontal pathogen T. forsythia plays a role in the formation of T. forsythia-F. nucleatum cobiofilms by hydrolyzing ß-glucans to glucose as a nutrient. We also unveiled that the expression of T. forsythia ß-glucanase is induced in response to F. nucleatum sensing. This study highlights the involvement of ß-glucanase activity in the development of T. forsythia-F. nucleatum biofilms and suggests that intake of dietary ß-glucans might be a contributing risk factor in plaque development and periodontal disease pathogenesis.


Biofilms/growth & development , Dental Plaque/microbiology , Fusobacterium nucleatum/physiology , Tannerella forsythia/enzymology , Fusobacterium nucleatum/growth & development , Humans
7.
Front Microbiol ; 8: 648, 2017.
Article En | MEDLINE | ID: mdl-28446907

Tannerella forsythia is a Gram-negative oral anaerobe associated with periodontitis. This bacterium is auxotrophic for the peptidoglycan amino sugar N-acetylmuramic (MurNAc) and likely relies on scavenging peptidoglycan fragments (muropeptides) released by cohabiting bacteria during their cell wall recycling. Many Gram-negative bacteria utilize an inner membrane permease, AmpG, to transport peptidoglycan fragments into their cytoplasm. In the T. forsythia genome, the Tanf_08365 ORF has been identified as a homolog of AmpG permease. In order to confirm the functionality of Tanf_08365, a reporter system in an Escherichia coli host was generated that could detect AmpG-dependent accumulation of cytosolic muropeptides via a muropeptide-inducible ß-lactamase reporter gene. In trans complementation of this reporter strain with a Tanf_08365 containing plasmid caused significant induction of ß-lactamase activity compared to that with an empty plasmid control. These data indicated that Tanf_08365 acted as a functional muropeptide permease causing accumulation of muropeptides in E. coli and thus suggested that it is a permease involved in muropeptide scavenging in T. forsythia. Furthermore, we showed that the promoter regulating the expression of Tanf_08365 was activated significantly by a hybrid two-component system regulatory protein, GppX. We also showed that compared to the parental T. forsythia strain a mutant lacking GppX in which the expression of AmpG was reduced significantly attenuated in utilizing free muropeptides. In summary, we have uncovered the mechanism by which this nutritionally fastidious microbe accesses released muropeptides in its environment, opening up the possibility of targeting this activity to reduce its numbers in periodontitis patients with potential benefits in the treatment of disease.

8.
Genome Announc ; 4(6)2016 Dec 01.
Article En | MEDLINE | ID: mdl-27908987

We report the genome sequences of three clinical isolates of Tannerella forsythia from the subgingival plaque of periodontitis patients attending clinics at the School of Dental Medicine, University at Buffalo. The availability of these genome sequences will aid the understanding of the pathogenesis of periodontitis.

9.
J Bacteriol ; 198(22): 3119-3125, 2016 11 15.
Article En | MEDLINE | ID: mdl-27601356

Tannerella forsythia is a Gram-negative periodontal pathogen lacking the ability to undergo de novo synthesis of amino sugars N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) that form the disaccharide repeating unit of the peptidoglycan backbone. T. forsythia relies on the uptake of these sugars from the environment, which is so far unexplored. Here, we identified a novel transporter system of T. forsythia involved in the uptake of MurNAc across the inner membrane and characterized a homolog of the Escherichia coli MurQ etherase involved in the conversion of MurNAc-6-phosphate (MurNAc-6-P) to GlcNAc-6-P. The genes encoding these components were identified on a three-gene cluster spanning Tanf_08375 to Tanf_08385 located downstream from a putative peptidoglycan recycling locus. We show that the three genes, Tanf_08375, Tanf_08380, and Tanf_08385, encoding a MurNAc transporter, a putative sugar kinase, and a MurQ etherase, respectively, are transcriptionally linked. Complementation of the Tanf_08375 and Tanf_08380 genes together in trans, but not individually, rescued the inability of an E. coli mutant deficient in the phosphotransferase (PTS) system-dependent MurNAc transporter MurP as well as that of a double mutant deficient in MurP and components of the PTS system to grow on MurNAc. In addition, complementation with this two-gene construct in E. coli caused depletion of MurNAc in the medium, further confirming this observation. Our results show that the products of Tanf_08375 and Tanf_08380 constitute a novel non-PTS MurNAc transporter system that seems to be widespread among bacteria of the Bacteroidetes phylum. To the best of our knowledge, this is the first identification of a PTS-independent MurNAc transporter in bacteria. IMPORTANCE: In this study, we report the identification of a novel transporter for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc) in the periodontal pathogen T. forsythia It has been known since the late 1980s that T. forsythia is a MurNAc auxotroph relying on environmental sources for this essential sugar. Most sugar transporters, and the MurNAc transporter MurP in particular, require a PTS phosphorelay to drive the uptake and concurrent phosphorylation of the sugar through the inner membrane in Gram-negative bacteria. Our study uncovered a novel type of PTS-independent MurNAc transporter, and although so far, it seems to be unique to T. forsythia, it may be present in a range of bacteria both of the oral cavity and gut, especially of the phylum Bacteroidetes.


Bacterial Proteins/metabolism , Glycoside Hydrolases/metabolism , Membrane Transport Proteins/metabolism , Muramic Acids/metabolism , Tannerella forsythia/genetics , Bacterial Proteins/genetics , Escherichia coli/genetics , Glycoside Hydrolases/genetics , Membrane Transport Proteins/genetics , Peptidoglycan/metabolism , Tannerella forsythia/enzymology
10.
Microb Pathog ; 94: 12-20, 2016 May.
Article En | MEDLINE | ID: mdl-26318875

Tannerella forsythia is a periodontal pathogen implicated in periodontitis. This gram-negative pathogen depends on exogenous peptidoglycan amino sugar N-acetylmuramic acid (NAM) for growth. In the biofilm state the bacterium can utilize sialic acid (Neu5Ac) instead of NAM to sustain its growth. Thus, the sialic acid utilization system of the bacterium plays a critical role in the growth and survival of the organism in the absence of NAM. We sought the function of a T. forsythia gene annotated as nanT coding for an inner-membrane sugar transporter located on a sialic acid utilization genetic cluster. To determine the function of this putative sialic acid transporter, an isogenic nanT-deletion mutant generated by allelic replacement strategy was evaluated for biofilm formation on NAM or Neu5Ac, and survival on KB epithelial cells. Moreover, since T. forsythia forms synergistic biofilms with Fusobacterium nucleatum, co-biofilm formation activity in mixed culture and sialic acid uptake in culture were also assessed. The data showed that the nanT-inactivated mutant of T. forsythia was attenuated in its ability to uptake sialic acid. The mutant formed weaker biofilms compared to the wild-type strain in the presence of sialic acid and as co-biofilms with F. nucleatum. Moreover, compared to the wild-type T. forsythia nanT-inactivated mutant showed reduced survival when incubated on KB epithelial cells. Taken together, the data presented here demonstrate that NanT-mediated sialic transportation is essential for sialic acid utilization during biofilm growth and survival of the organism on epithelial cells and implies sialic acid might be key for its survival both in subgingival biofilms and during infection of human epithelial cells in vivo.


Biofilms/growth & development , Epithelial Cells/microbiology , Organic Anion Transporters/metabolism , Symporters/metabolism , Tannerella forsythia/metabolism , Bacterial Adhesion , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , DNA, Bacterial/genetics , Fusobacterium nucleatum/growth & development , Fusobacterium nucleatum/metabolism , Genes, Bacterial , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/metabolism , Humans , KB Cells , Muramic Acids/metabolism , Neuraminidase/metabolism , Organic Anion Transporters/biosynthesis , Organic Anion Transporters/genetics , Sequence Deletion , Symporters/biosynthesis , Symporters/genetics , Tannerella forsythia/genetics , Tannerella forsythia/growth & development
11.
Microbiome ; 3: 48, 2015 Oct 05.
Article En | MEDLINE | ID: mdl-26437933

BACKGROUND: Currently, taxonomic interrogation of microbiota is based on amplification of 16S rRNA gene sequences in clinical and scientific settings. Accurate evaluation of the microbiota depends heavily on the primers used, and genus/species resolution bias can arise with amplification of non-representative genomic regions. The latest Illumina MiSeq sequencing chemistry has extended the read length to 300 bp, enabling deep profiling of large number of samples in a single paired-end reaction at a fraction of the cost. An increasingly large number of researchers have adopted this technology for various microbiome studies targeting the 16S rRNA V3-V4 hypervariable region. RESULTS: To expand the applicability of this powerful platform for further descriptive and functional microbiome studies, we standardized and tested an efficient, reliable, and straightforward workflow for the amplification, library construction, and sequencing of the 16S V1-V3 hypervariable region using the new 2 × 300 MiSeq platform. Our analysis involved 11 subgingival plaque samples from diabetic and non-diabetic human subjects suffering from periodontitis. The efficiency and reliability of our experimental protocol was compared to 16S V3-V4 sequencing data from the same samples. Comparisons were based on measures of observed taxonomic richness and species evenness, along with Procrustes analyses using beta(ß)-diversity distance metrics. As an experimental control, we also analyzed a total of eight technical replicates for the V1-V3 and V3-V4 regions from a synthetic community with known bacterial species operon counts. We show that our experimental protocol accurately measures true bacterial community composition. Procrustes analyses based on unweighted UniFrac ß-diversity metrics depicted significant correlation between oral bacterial composition for the V1-V3 and V3-V4 regions. However, measures of phylotype richness were higher for the V1-V3 region, suggesting that V1-V3 offers a deeper assessment of population diversity and community ecology for the complex oral microbiota. CONCLUSION: This study provides researchers with valuable experimental evidence for the selection of appropriate 16S amplicons for future human oral microbiome studies. We expect that the tested 16S V1-V3 framework will be widely applicable to other types of microbiota, allowing robust, time-efficient, and inexpensive examination of thousands of samples for population, phylogenetic, and functional crossectional and longitutidal studies.


Metagenome , Microbiota , Mouth/microbiology , Bacteria/classification , Bacteria/genetics , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics
...