Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Photoacoustics ; 34: 100565, 2023 Dec.
Article En | MEDLINE | ID: mdl-38058748

Phonons and magnons are prospective information carriers to substitute the transfer of charge in nanoscale communication devices. Our ability to manipulate them at the nanoscale and with ultimate speed is examined by ultrafast acoustics and femtosecond optomagnetism, which use ultrashort laser pulses for generation and detection of the corresponding coherent excitations. Ultrafast magnetoacoustics merges these research directions and focuses on the interaction of optically generated coherent phonons and magnons. In this review, we present ultrafast magnetoacoustic experiments with nanostructures based on the alloy (Fe,Ga) known as Galfenol. We demonstrate how broad we can manipulate the magnetic response on an optical excitation by controlling the spectrum of generated coherent phonons and their interaction with magnons. Resonant phonon pumping of magnons, formation of magnon polarons, driving of a magnetization wave by a guided phonon wavepacket are demonstrated. The presented experimental results have great application potential in emerging areas of modern nanoelectronics.

2.
Nat Nanotechnol ; 18(8): 849-853, 2023 Aug.
Article En | MEDLINE | ID: mdl-37157021

Topologically protected magnetic textures are promising candidates for information carriers in future memory devices, as they can be efficiently propelled at very high velocities using current-induced spin torques. These textures-nanoscale whirls in the magnetic order-include skyrmions, half-skyrmions (merons) and their antiparticles. Antiferromagnets have been shown to host versions of these textures that have high potential for terahertz dynamics, deflection-free motion and improved size scaling due to the absence of stray field. Here we show that topological spin textures, merons and antimerons, can be generated at room temperature and reversibly moved using electrical pulses in thin-film CuMnAs, a semimetallic antiferromagnet that is a testbed system for spintronic applications. The merons and antimerons are localized on 180° domain walls, and move in the direction of the current pulses. The electrical generation and manipulation of antiferromagnetic merons is a crucial step towards realizing the full potential of antiferromagnetic thin films as active components in high-density, high-speed magnetic memory devices.

3.
Sci Rep ; 11(1): 2300, 2021 Jan 27.
Article En | MEDLINE | ID: mdl-33504875

We present detailed experimental measurements and simulations of the field-dependent magnetization and magnetoresistance in the vicinity of the Curie temperature in the highly disordered dilute ferromagnetic semiconductor (Ga,Mn)As. The observed dependence of the magnetization on external magnetic field and temperature is consistent with three-dimensional Heisenberg equation of state calculations including a narrow distribution of critical temperatures. The magnetoresistance shows a peak at the Curie temperature due to the suppression of magnetic scattering in an applied magnetic field, which is well-described by considering changes in the square of the magnetization induced by the magnetic field.

4.
Sci Rep ; 9(1): 3156, 2019 Feb 28.
Article En | MEDLINE | ID: mdl-30816265

The use of voltages to control magnetisation via the inverse magnetostriction effect in piezoelectric/ferromagnet heterostructures holds promise for ultra-low energy information storage technologies. Epitaxial galfenol, an alloy of iron and gallium, has been shown to be a highly suitable material for such devices because it possesses biaxial anisotropy and large magnetostriction. Here we experimentally investigate the properties of galfenol/spacer/galfenol structures in which the compositions of the galfenol layers are varied in order to produce different strengths of the magnetic anisotropy and magnetostriction constants. Based upon these layers, we propose and simulate the operation of an information storage device that can operate as an energy efficient multilevel memory cell.

5.
Sci Rep ; 7(1): 7613, 2017 08 08.
Article En | MEDLINE | ID: mdl-28790365

Concepts for information storage and logical processing based on magnetic domain walls have great potential for implementation in future information and communications technologies. To date, the need to apply power hungry magnetic fields or heat dissipating spin polarized currents to manipulate magnetic domain walls has limited the development of such technologies. The possibility of controlling magnetic domain walls using voltages offers an energy efficient route to overcome these limitations. Here we show that a voltage-induced uniaxial strain induces reversible deterministic switching of the chirality of a magnetic vortex wall. We discuss how this functionality will be applicable to schemes for information storage and logical processing, making a significant step towards the practical implementation of magnetic domain walls in energy efficient computing.

6.
Sci Rep ; 7: 42107, 2017 02 10.
Article En | MEDLINE | ID: mdl-28186114

We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

7.
Science ; 351(6273): 587-90, 2016 Feb 05.
Article En | MEDLINE | ID: mdl-26841431

Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 10(6) ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.

8.
Sci Rep ; 5: 17079, 2015 Nov 25.
Article En | MEDLINE | ID: mdl-26602978

Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions.

9.
Phys Rev Lett ; 115(6): 067202, 2015 Aug 07.
Article En | MEDLINE | ID: mdl-26296129

The dynamics of magnetic vortex cores is of great interest because the gyrotropic mode has applications in spin torque driven magnetic microwave oscillators, and also provides a means to flip the direction of the core for use in magnetic storage devices. Here, we propose a new means of stimulating magnetization reversal of the vortex core by applying a time-varying strain gradient to planar structures of the magnetostrictive material Fe(81)Ga(19) (Galfenol), coupled to an underlying piezoelectric layer. Using micromagnetic simulations we have shown that the vortex core state can be deterministically reversed by electric field control of the time-dependent strain-induced anisotropy.

10.
Sci Rep ; 5: 7921, 2015 Jan 21.
Article En | MEDLINE | ID: mdl-25605499

The perpendicular magnetic anisotropy K(eff), magnetization reversal, and field-driven domain wall velocity in the creep regime are modified in Pt/Co(0.85-1.0 nm)/Pt thin films by strain applied via piezoelectric transducers. K(eff), measured by the extraordinary Hall effect, is reduced by 10 kJ/m(3) by tensile strain out-of-plane ε(z) = 9 × 10(-4), independently of the film thickness, indicating a dominant volume contribution to the magnetostriction. The same strain reduces the coercive field by 2-4 Oe, and increases the domain wall velocity measured by wide-field Kerr microscopy by 30-100%, with larger changes observed for thicker Co layers. We consider how strain-induced changes in the perpendicular magnetic anisotropy can modify the coercive field and domain wall velocity.

11.
Nat Commun ; 4: 2322, 2013.
Article En | MEDLINE | ID: mdl-23959149

Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.

12.
Sci Rep ; 3: 2220, 2013.
Article En | MEDLINE | ID: mdl-23860685

Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

13.
J Nanosci Nanotechnol ; 12(9): 7545-9, 2012 Sep.
Article En | MEDLINE | ID: mdl-23035513

Using atomic force microscopy, we have studied the surface structures of high quality molecular beam epitaxy grown (Ga, Mn)As compound. Several samples with different thickness and Mn concentration, as well as a few (Ga, Mn)(As, P) samples have been investigated. All these samples have shown the presence of periodic ripples aligned along the [110] direction. From a detailed Fourier analysis we have estimated the period (-50 nm) and the amplitude of these structures.

14.
Nanotechnology ; 22(25): 254004, 2011 Jun 24.
Article En | MEDLINE | ID: mdl-21572188

(Ga, Mn)As and other diluted magnetic semiconductors (DMS) attract a great deal of attention for potential spintronic applications because of the possibility of controlling the magnetic properties via electrical gating. Integration of a ferroelectric gate on the DMS channel adds to the system a non-volatile memory functionality and permits nanopatterning via the polarization domain engineering. This topical review is focused on the multiferroic system, where the ferromagnetism in the (Ga, Mn)As DMS channel is controlled by the non-volatile field effect of the spontaneous polarization. Use of ferroelectric polymer gates in such heterostructures offers a viable alternative to the traditional oxide ferroelectrics generally incompatible with DMS. Here we review the proof-of-concept experiments demonstrating the ferroelectric control of ferromagnetism, analyze the performance issues of the ferroelectric gates and discuss prospects for further development of the ferroelectric/DMS heterostructures toward the multiferroic field effect transistor.

15.
Phys Rev Lett ; 105(22): 227202, 2010 Nov 26.
Article En | MEDLINE | ID: mdl-21231418

We analyze microscopically the valence and impurity band models of ferromagnetic (Ga,Mn)As. We find that the tight-binding Anderson approach with conventional parametrization and the full potential local-density approximation+U calculations give a very similar band structure whose microscopic spectral character is consistent with the physical premise of the k·p kinetic-exchange model. On the other hand, the various models with a band structure comprising an impurity band detached from the valence band assume mutually incompatible microscopic spectral character. By adapting the tight-binding Anderson calculations individually to each of the impurity band pictures in the single Mn impurity limit and then by exploring the entire doping range, we find that a detached impurity band does not persist in any of these models in ferromagnetic (Ga,Mn)As.

16.
Phys Rev Lett ; 101(7): 077201, 2008 Aug 15.
Article En | MEDLINE | ID: mdl-18764572

We observe a singularity in the temperature derivative drho/dT of resistivity at the Curie point of high-quality (Ga,Mn)As ferromagnetic semiconductors with Tc's ranging from approximately 80 to 185 K. The character of the anomaly is sharply distinct from the critical contribution to transport in conventional dense-moment magnetic semiconductors and is reminiscent of the drho/dT singularity in transition metal ferromagnets. Within the critical region accessible in our experiments, the temperature dependence on the ferromagnetic side can be explained by dominant scattering from uncorrelated spin fluctuations. The singular behavior of drho/dT on the paramagnetic side points to the important role of short-range correlated spin fluctuations.

17.
Nat Mater ; 7(6): 464-7, 2008 Jun.
Article En | MEDLINE | ID: mdl-18454153

Multiferroic structures that provide coupled ferroelectric and ferromagnetic responses are of significant interest as they may be used in novel memory devices and spintronic logic elements. One approach towards this goal is the use of composites that couple ferromagnetic and ferroelectric layers through magnetostrictive and piezoelectric strain transmitted across the interfaces. However, mechanical clamping of the films to the substrate limits their response. Structures where the magnetic response is modulated directly by the electric field of the poled ferroelectric would eliminate this constraint and provide a qualitatively higher level of integration, combining the emerging field of multiferroics with conventional semiconductor microelectronics. Here, we report the realization of such a device using (Ga,Mn)As, which is an archetypical diluted magnetic semiconductor with well-understood carrier-mediated ferromagnetism, and a polymer ferroelectric gate. Polarization reversal of the gate by a single voltage pulse results in a persistent modulation of the Curie temperature of the ferromagnetic semiconductor. The non-volatile gating of (Ga,Mn)As has been made possible by applying a low-temperature copolymer deposition technique that is distinct from pre-existing technologies for ferroelectric gates on magnetic oxides. This accomplishment opens a way to nanometre-scale modulation of magnetic semiconductor properties with rewritable ferroelectric domain patterns, operating at modest voltages and subnanosecond times.

18.
Phys Rev Lett ; 99(14): 147207, 2007 Oct 05.
Article En | MEDLINE | ID: mdl-17930718

We explore the basic physical origins of the noncrystalline and crystalline components of the anisotropic magnetoresistance (AMR) in (Ga,Mn)As. The sign of the noncrystalline AMR is found to be determined by the form of spin-orbit coupling in the host band and by the relative strengths of the nonmagnetic and magnetic contributions to the Mn impurity potential. We develop experimental methods yielding directly the noncrystalline and crystalline AMR components which are then analyzed independently. We report the observation of an AMR dominated by a large uniaxial crystalline component and show that AMR can be modified by local strain relaxation. Generic implications of our findings for other dilute moment systems are discussed.

...