Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Neurobiol Aging ; 140: 12-21, 2024 Aug.
Article En | MEDLINE | ID: mdl-38701647

The aging population suffers from memory impairments. Slow-wave activity (SWA) is composed of slow (0.5-1 Hz) and delta (1-4 Hz) oscillations, which play important roles in long-term memory and working memory function respectively. SWA disruptions might lead to memory disturbances often experienced by older adults. We conducted behavioral tests in young and older C57BL/6 J mice. SWA was monitored using wide-field imaging with voltage sensors. Cell-specific calcium imaging was used to monitor the activity of excitatory and inhibitory neurons in these mice. Older mice exhibited impairments in working memory but not memory consolidation. Voltage-sensor imaging revealed aberrant synchronization of neuronal activity in older mice. Notably, we found older mice exhibited no significant alterations in slow oscillations, whereas there was a significant increase in delta power compared to young mice. Calcium imaging revealed hypoactivity in inhibitory neurons of older mice. Combined, these results suggest that neural activity disruptions might correlate with aberrant memory performance in older mice.


Aging , Disease Models, Animal , Memory Disorders , Memory, Short-Term , Mice, Inbred C57BL , Animals , Aging/physiology , Aging/psychology , Memory Disorders/physiopathology , Memory Disorders/etiology , Memory Disorders/psychology , Memory, Short-Term/physiology , Neurons/physiology , Male , Calcium/metabolism
2.
Mol Neurodegener ; 18(1): 93, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38041158

BACKGROUND: Alzheimer's disease (AD) patients exhibit memory disruptions and profound sleep disturbances, including disruption of deep non-rapid eye movement (NREM) sleep. Slow-wave activity (SWA) is a major restorative feature of NREM sleep and is important for memory consolidation. METHODS: We generated a mouse model where GABAergic interneurons could be targeted in the presence of APPswe/PS1dE9 (APP) amyloidosis, APP-GAD-Cre mice. An electroencephalography (EEG) / electromyography (EMG) telemetry system was used to monitor sleep disruptions in these animals. Optogenetic stimulation of GABAergic interneurons in the anterior cortex targeted with channelrhodopsin-2 (ChR2) allowed us to examine the role GABAergic interneurons play in sleep deficits. We also examined the effect of optogenetic stimulation on amyloid plaques, neuronal calcium as well as sleep-dependent memory consolidation. In addition, microglial morphological features and functions were assessed using confocal microscopy and flow cytometry. Finally, we performed sleep deprivation during optogenetic stimulation to investigate whether sleep restoration was necessary to slow AD progression. RESULTS: APP-GAD-Cre mice exhibited impairments in sleep architecture including decreased time spent in NREM sleep, decreased delta power, and increased sleep fragmentation compared to nontransgenic (NTG) NTG-GAD-Cre mice. Optogenetic stimulation of cortical GABAergic interneurons increased SWA and rescued sleep impairments in APP-GAD-Cre animals. Furthermore, it slowed AD progression by reducing amyloid deposition, normalizing neuronal calcium homeostasis, and improving memory function. These changes were accompanied by increased numbers and a morphological transformation of microglia, elevated phagocytic marker expression, and enhanced amyloid ß (Aß) phagocytic activity of microglia. Sleep was necessary for amelioration of pathophysiological phenotypes in APP-GAD-Cre mice. CONCLUSIONS: In summary, our study shows that optogenetic targeting of GABAergic interneurons rescues sleep, which then ameliorates neuropathological as well as behavioral deficits by increasing clearance of Aß by microglia in an AD mouse model.


Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Microglia/metabolism , Mice, Transgenic , Optogenetics , Calcium/metabolism , Sleep , GABAergic Neurons/metabolism , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics
3.
Sci Rep ; 13(1): 13075, 2023 08 11.
Article En | MEDLINE | ID: mdl-37567942

Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP/PS1 mice. The power but not the frequency of astrocytic calcium transients was reduced in APP/PS1 mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.


Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Optogenetics/adverse effects , Calcium , Astrocytes/metabolism , Mice, Transgenic , Calcium, Dietary , Disease Models, Animal , Brain/metabolism , Disease Progression , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics
4.
Res Sq ; 2023 Apr 25.
Article En | MEDLINE | ID: mdl-37163040

Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP mice. The power but not the frequency of astrocytic calcium transients was reduced in APP mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.

5.
Commun Biol ; 5(1): 1323, 2022 12 02.
Article En | MEDLINE | ID: mdl-36460716

Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive decline. These impairments correlate with early alterations in neuronal network activity in AD patients. Disruptions in the activity of individual neurons have been reported in mouse models of amyloidosis. However, the impact of amyloid pathology on the spontaneous activity of distinct neuronal types remains unexplored in vivo. Here we use in vivo calcium imaging with multiphoton microscopy to monitor and compare the activity of excitatory and two types of inhibitory interneurons in the cortices of APP/PS1 and control mice under isoflurane anesthesia. We also determine the relationship between amyloid accumulation and the deficits in spontaneous activity in APP/PS1 mice. We show that somatostatin-expressing (SOM) interneurons are hyperactive, while parvalbumin-expressing interneurons are hypoactive in APP/PS1 mice. Only SOM interneuron hyperactivity correlated with proximity to amyloid plaque. These inhibitory deficits were accompanied by decreased excitatory neuron activity in APP/PS1 mice. Our study identifies cell-specific neuronal firing deficits in APP/PS1 mice driven by amyloid pathology. These findings highlight the importance of addressing the complexity of neuron-specific deficits to ameliorate circuit dysfunction in Alzheimer's disease.


Alzheimer Disease , Amyloidosis , Mice , Animals , Interneurons , Neurons , Disease Models, Animal , Plaque, Amyloid , Amyloidogenic Proteins
6.
eNeuro ; 8(3)2021.
Article En | MEDLINE | ID: mdl-33926907

Alzheimer's disease (AD) is an incurable neurodegenerative disorder and a major cause of dementia. Some of the hallmarks of AD include presence of amyloid plaques in brain parenchyma, calcium dysregulation within individual neurons, and neuroinflammation. A promising therapeutic would reverse or stymie these pathophysiologies in an animal model of AD. We tested the effect of NB-02, previously known as DA-9803, a novel multimodal therapeutic, on amyloid deposition, neuronal calcium regulation and neuroinflammation in 8- to 10-month-old APP/PS1 mice, an animal model of AD. In vivo multiphoton microscopy revealed that two-month-long administration of NB-02 halted amyloid plaque deposition and cleared amyloid in the cortex. Postmortem analysis verified NB-02-dependent decrease in plaque deposition in the cortex as well as hippocampus. Furthermore, drug treatment reversed neuronal calcium elevations, thus restoring neuronal function. Finally, NB-02 restored spine density and transformed the morphology of astrocytes as well as microglia to a more phagocytic state, affecting neuroinflammation. NB-02 was effective at reversing AD neuropathophysiology in an animal model. Therefore, in addition to serving as a promising preventative agent, NB-02 holds potential as a treatment for AD in the clinic.


Alzheimer Disease , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Plaque, Amyloid/drug therapy
7.
J Neurosci ; 40(24): 4750-4760, 2020 06 10.
Article En | MEDLINE | ID: mdl-32381486

Fear is adaptive when the level of the response rapidly scales to degree of threat. Using a discrimination procedure consisting of danger, uncertainty, and safety cues, we have found rapid fear scaling (within 2 s of cue presentation) in male rats. Here, we examined a possible role for the nucleus accumbens core (NAcc) in the acquisition and expression of fear scaling. In experiment 1, male Long-Evans rats received bilateral sham or neurotoxic NAcc lesions, recovered, and underwent fear discrimination. NAcc-lesioned rats were generally impaired in scaling fear to degree of threat, and specifically impaired in rapid uncertainty-safety discrimination. In experiment 2, male Long-Evans rats received NAcc transduction with halorhodopsin (Halo) or a control fluorophore. After fear scaling was established, the NAcc was illuminated during cue or control periods. NAcc-Halo rats receiving cue illumination were specifically impaired in rapid uncertainty-safety discrimination. The results reveal a general role for the NAcc in scaling fear to degree of threat, and a specific role in rapid discrimination of uncertain threat and safety.SIGNIFICANCE STATEMENT Rapidly discriminating cues for threat and safety is essential for survival and impaired threat-safety discrimination is a hallmark of stress and anxiety disorders. In two experiments, we induced nucleus accumbens core (NAcc) dysfunction in rats receiving fear discrimination consisting of cues for danger, uncertainty, and safety. Permanent NAcc dysfunction, via neurotoxic lesion, generally disrupted the ability to scale fear to degree of threat, and specifically impaired one component of scaling: rapid discrimination of uncertain threat and safety. Reversible NAcc dysfunction, via optogenetic inhibition, specifically impaired rapid discrimination of uncertain threat and safety. The results reveal that the NAcc is essential to scale fear to degree of threat, and is a plausible source of dysfunction in stress and anxiety disorders.


Discrimination, Psychological/physiology , Fear/physiology , Nucleus Accumbens/physiology , Animals , Conditioning, Classical/physiology , Male , Optogenetics , Rats , Rats, Long-Evans
8.
Nat Commun ; 11(1): 2146, 2020 05 01.
Article En | MEDLINE | ID: mdl-32358564

Mitochondria contribute to shape intraneuronal Ca2+ signals. Excessive Ca2+ taken up by mitochondria could lead to cell death. Amyloid beta (Aß) causes cytosolic Ca2+ overload, but the effects of Aß on mitochondrial Ca2+ levels in Alzheimer's disease (AD) remain unclear. Using a ratiometric Ca2+ indicator targeted to neuronal mitochondria and intravital multiphoton microscopy, we find increased mitochondrial Ca2+ levels associated with plaque deposition and neuronal death in a transgenic mouse model of cerebral ß-amyloidosis. Naturally secreted soluble Aß applied onto the healthy brain increases Ca2+ concentration in mitochondria, which is prevented by blockage of the mitochondrial calcium uniporter. RNA-sequencing from post-mortem AD human brains shows downregulation in the expression of mitochondrial influx Ca2+ transporter genes, but upregulation in the genes related to mitochondrial Ca2+ efflux pathways, suggesting a counteracting effect to avoid Ca2+ overload. We propose lowering neuronal mitochondrial Ca2+ by inhibiting the mitochondrial Ca2+ uniporter as a novel potential therapeutic target against AD.


Alzheimer Disease/metabolism , Brain/metabolism , Calcium/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Neurons/cytology , Neurons/metabolism , Animals , Blotting, Western , Cells, Cultured , Cytosol/metabolism , Immunohistochemistry , Male , Membrane Potential, Mitochondrial/physiology , Mice , Mice, Inbred C57BL
...