Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-15, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818634

RESUMEN

This review systematically explores the pivotal role of food science and technology as a support for Phenylketonuria (PKU) dietary management. It delves into the genetic and metabolic underpinnings of PKU, highlighting the crucial need for stringent dietary regulation to manage phenylalanine levels and mitigate neurological complications. Through bibliometric analysis and current product evaluations, it identifies trends in PKU food research, emphasizing recent innovations in food formulations such as glycomacropeptide (GMP) supplements and higher appealing low-phenylalanine food products. Furthermore, it accentuates the sensory and consumer aspects of PKU dietary solutions, underscoring the importance of palatability for adherence. Notably, the review introduces 3D food printing as an emerging technology for creating personalized, nutrient-optimized, and sensory-appealing foods for PKU patients, offering a new horizon in dietary management. This comprehensive assessment underscores the dynamic interplay between nutritional science, food technology, and sensory evaluation in improving the quality of life for individuals with PKU.

2.
Compr Rev Food Sci Food Saf ; 23(1): e13281, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284572

RESUMEN

Seafood processing has traditionally been challenging due to the rapid spoilage rates and quality degradation of these products. With the rise of food science and technology, novel methods are being developed to overcome these challenges and improve seafood quality, shelf life, and safety. These methods range from high-pressure processing (HPP) to edible coatings, and their exploration and application in seafood processing are of great importance. This review synthesizes the recent advancements in various emerging technologies used in the seafood industry and critically evaluates their efficacy, challenges, and potential benefits. The technologies covered include HPP, ultrasound, pulsed electric field, plasma technologies, pulsed light, low-voltage electrostatic field, ozone, vacuum cooking, purified condensed smoke, microwave heating, and edible coating. Each technology offers unique advantages and presents specific challenges; however, their successful application largely depends on the nature of the seafood product and the desired result. HPP and microwave heating show exceptional promise in terms of quality retention and shelf-life extension. Edible coatings present a multifunctional approach, offering preservation and the potential enhancement of nutritional value. The strength, weakness, opportunity, and threat (SWOT) analysis indicates that, despite the potential of these technologies, cost-effectiveness, scalability, regulatory considerations, and consumer acceptance remain crucial issues. As the seafood industry stands on the cusp of a technological revolution, understanding these nuances becomes imperative for sustainable growth. Future research should focus on technological refinements, understanding consumer perspectives, and developing regulatory frameworks to facilitate the adoption of these technologies in the seafood industry.


Asunto(s)
Tecnología de Alimentos , Industria de Procesamiento de Alimentos , Valor Nutritivo , Culinaria , Alimentos Marinos
3.
Foods ; 12(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37569168

RESUMEN

This study involves an investigation of the effects of various cooking temperatures, freeze-thaw processes, and food preservatives on the quality and shelf-life of sous vide Mediterranean mussels. Cooking temperatures of 80 °C or above significantly improved the microbiological quality, with bacterial counts remaining within the acceptability range for human consumption even after 21 days of refrigerated storage. Fast freezing followed by slow thawing preserved the highest moisture content, potentially improving texture. Sensory analysis revealed that refrigerated sous vide mussels maintained a comparable taste to freshly cooked samples. Frozen samples reheated via microwaving exhibited more intense flavour than pan-reheated or fresh mussels. Food additives, including citric acid, potassium benzoate, and potassium sorbate, alone or in combination with grape seed oil, significantly reduced total volatile basic nitrogen and thiobarbituric acid-reactive substances during 28 days of storage, indicating decreased spoilage and lipid oxidation. Mussels with a combination of these additives registered a nitrogen content as low as 22 mg of N/100g after 28 days, well below the limit of acceptability (<35 mg of N/100g). Food additives also inhibited bacterial growth, with mesophilic bacteria count below 3.35 Log CFU/g after 28 days, compared with 5.37 Log CFU/g in control samples. This study provides valuable insights for developing optimal cooking and preservation methods for sous vide cooked seafood, underscoring the need for further research on optimal cooking and freeze-thaw protocols for various seafood types.

4.
Mar Drugs ; 21(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36976191

RESUMEN

Thraustochytrids are aquatic unicellular protists organisms that represent an important reservoir of a wide range of bioactive compounds, such as essential polyunsaturated fatty acids (PUFAs) such as arachidonic acid (ARA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), which are involved in the regulation of the immune system. In this study, we explore the use of co-cultures of Aurantiochytrium sp. and bacteria as a biotechnological tool capable of stimulating PUFA bioaccumulation. In particular, the co-culture of lactic acid bacteria and the protist Aurantiochytrium sp. T66 induce PUFA bioaccumulation, and the lipid profile was evaluated in cultures at different inoculation times, with two different strains of lactic acid bacteria capable of producing the tryptophan dependent auxins, and one strain of Azospirillum sp., as a reference for auxin production. Our results showed that the Lentilactobacillus kefiri K6.10 strain inoculated at 72 h gives the best PUFA content (30.89 mg g-1 biomass) measured at 144 h of culture, three times higher than the control (8.87 mg g-1 biomass). Co-culture can lead to the generation of complex biomasses with higher added value for developing aquafeed supplements.


Asunto(s)
Lactobacillales , Estramenopilos , Técnicas de Cocultivo , Ácidos Grasos Insaturados , Ácidos Docosahexaenoicos , Ácidos Grasos
5.
Mar Drugs ; 21(3)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36976239

RESUMEN

This study investigates the potential of utilizing three food wastes: cheese whey (CW), beet molasses (BM), and corn steep liquor (CSL) as alternative nutrient sources for the cultivation of the diatom Phaeodactylum tricornutum, a promising source of polyunsaturated eicosapentaenoic acid (EPA) and the carotenoid fucoxanthin. The CW media tested did not significantly impact the growth rate of P. tricornutum; however, CW hydrolysate significantly enhances cell growth. BM in cultivation medium enhances biomass production and fucoxanthin yield. The optimization of the new food waste medium was conducted through the application of a response surface methodology (RSM) using hydrolyzed CW, BM, and CSL as factors. The results showed a significant positive impact of these factors (p < 0.005), with an optimized biomass yield of 2.35 g L-1 and a fucoxanthin yield of 3.64 mg L-1 using a medium composed of 33 mL L-1 of CW, 2.3 g L-1 of BM, and 2.24 g L-1 of CSL. The experimental results reported in this study showed that some food by-products from a biorefinery perspective could be utilized for the efficient production of fucoxanthin and other high-added-value products such as eicosapentaenoic acid (EPA).


Asunto(s)
Queso , Diatomeas , Ácidos Grasos Omega-3 , Microalgas , Eliminación de Residuos , Ácidos Grasos Omega-3/metabolismo , Ácido Eicosapentaenoico , Suero Lácteo , Diatomeas/metabolismo , Antioxidantes/metabolismo , Proteína de Suero de Leche/metabolismo , Microalgas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA