Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Bioenerg ; 1865(1): 149013, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717932

RESUMEN

Photosystem II is the water/plastoquinone photo-oxidoreductase of photosynthesis. The photochemistry and catalysis occur in a quasi-symmetrical heterodimer, D1D2, that evolved from a homodimeric ancestor. Here, we studied site-directed mutants in PSII from the thermophilic cyanobacterium Thermosynechoccocus elongatus, focusing on the primary electron donor chlorophyll a in D1, ChlD1, and on its symmetrical counterpart in D2, ChlD2, which does not play a direct photochemical role. The main conserved amino acid specific to ChlD1 is D1/T179, which H-bonds the water ligand to its Mg2+, while its counterpart near ChlD2 is the non-H-bonding D2/I178. The symmetrical-swapped mutants, D1/T179I and D2/I178T, and a second ChlD2 mutant, D2/I178H, were studied. The D1 mutations affected the 686 nm absorption attributed to ChlD1, while the D2 mutations affected a 663 nm feature, tentatively attributed to ChlD2. The mutations had little effect on enzyme activity and forward electron transfer, reflecting the robustness of the overall enzyme function. In contrast, the mutations significantly affected photodamage and protective mechanisms, reflecting the importance of redox tuning in these processes. In D1/T179I, the radical pair recombination triplet on ChlD1 was shared onto a pheophytin, presumably PheD1 and the detection of 3PheD1 supports the proposed mechanism for the anomalously short lifetime of 3ChlD1; e.g. electron transfer quenching by QA- of 3PheD1 after triplet transfer from 3ChlD1. In D2/I178T, a charge separation could occur between ChlD2 and PheD2, a reaction that is thought to occur in ancestral precursors of PSII. These mutants help understand the evolution of asymmetry in PSII.


Asunto(s)
Aminoácidos , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Aminoácidos/genética , Clorofila A , Clorofila/metabolismo , Mutagénesis Sitio-Dirigida , Agua
2.
Photosynth Res ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37751034

RESUMEN

Flash-induced absorption changes in the Soret region arising from the [PD1PD2]+ state, the chlorophyll cation radical formed upon light excitation of Photosystem II (PSII), were measured in Mn-depleted PSII cores at pH 8.6. Under these conditions, TyrD is i) reduced before the first flash, and ii) oxidized before subsequent flashes. In wild-type PSII, when TyrD● is present, an additional signal in the [PD1PD2]+-minus-[PD1PD2] difference spectrum was observed when compared to the first flash when TyrD is not oxidized. The additional feature was "W-shaped" with troughs at 434 nm and 446 nm. This feature was absent when TyrD was reduced, but was present (i) when TyrD was physically absent (and replaced by phenylalanine) or (ii) when its H-bonding histidine (D2-His189) was physically absent (replaced by a Leucine). Thus, the simple difference spectrum without the double trough feature at 434 nm and 446 nm, seemed to require the native structural environment around the reduced TyrD and its H bonding partners to be present. We found no evidence of involvement of PD1, ChlD1, PheD1, PheD2, TyrZ, and the Cytb559 heme in the W-shaped difference spectrum. However, the use of a mutant of the PD2 axial His ligand, the D2-His197Ala, shows that the PD2 environment seems involved in the formation of "W-shaped" signal.

3.
Plant Physiol ; 192(4): 2656-2671, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37202365

RESUMEN

In thylakoid membranes, photosystem II (PSII) monomers from the stromal lamellae contain the subunits PsbS and Psb27 (PSIIm-S/27), while PSII monomers (PSIIm) from granal regions lack these subunits. Here, we have isolated and characterized these 2 types of PSII complexes in tobacco (Nicotiana tabacum). PSIIm-S/27 showed enhanced fluorescence, the near absence of oxygen evolution, and limited and slow electron transfer from QA to QB compared to the near-normal activities in the granal PSIIm. However, when bicarbonate was added to PSIIm-S/27, water splitting and QA to QB electron transfer rates were comparable to those in granal PSIIm. The findings suggest that the binding of PsbS and/or Psb27 inhibits forward electron transfer and lowers the binding affinity for bicarbonate. This can be rationalized in terms of the recently discovered photoprotection role played by bicarbonate binding via the redox tuning of the QA/QA•- couple, which controls the charge recombination route, and this limits chlorophyll triplet-mediated 1O2 formation. These findings suggest that PSIIm-S/27 is an intermediate in the assembly of PSII in which PsbS and/or Psb27 restrict PSII activity while in transit using a bicarbonate-mediated switch and protective mechanism.


Asunto(s)
Bicarbonatos , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Bicarbonatos/metabolismo , Tilacoides/metabolismo , Transporte de Electrón , Oxidación-Reducción
4.
Annu Rev Plant Biol ; 74: 225-257, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36889003

RESUMEN

Photosystem II is the water-oxidizing and O2-evolving enzyme of photosynthesis. How and when this remarkable enzyme arose are fundamental questions in the history of life that have remained difficult to answer. Here, recent advances in our understanding of the origin and evolution of photosystem II are reviewed and discussed in detail. The evolution of photosystem II indicates that water oxidation originated early in the history of life, long before the diversification of cyanobacteria and other major groups of prokaryotes, challenging and transforming current paradigms on the evolution of photosynthesis. We show that photosystem II has remained virtually unchanged for billions of years, and yet the nonstop duplication process of the D1 subunit of photosystem II, which controls photochemistry and catalysis, has enabled the enzyme to become adaptable to variable environmental conditions and even to innovate enzymatic functions beyond water oxidation. We suggest that this evolvability can be harnessed to develop novel light-powered enzymes with the capacity to carry out complex multistep oxidative transformations for sustainable biocatalysis.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Fotosíntesis/genética , Agua , Cianobacterias/genética , Cianobacterias/metabolismo , Oxidación-Reducción , Oxígeno
5.
Elife ; 112022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35852834

RESUMEN

Photosystem II (PSII) uses the energy from red light to split water and reduce quinone, an energy-demanding process based on chlorophyll a (Chl-a) photochemistry. Two types of cyanobacterial PSII can use chlorophyll d (Chl-d) and chlorophyll f (Chl-f) to perform the same reactions using lower energy, far-red light. PSII from Acaryochloris marina has Chl-d replacing all but one of its 35 Chl-a, while PSII from Chroococcidiopsis thermalis, a facultative far-red species, has just 4 Chl-f and 1 Chl-d and 30 Chl-a. From bioenergetic considerations, the far-red PSII were predicted to lose photochemical efficiency and/or resilience to photodamage. Here, we compare enzyme turnover efficiency, forward electron transfer, back-reactions and photodamage in Chl-f-PSII, Chl-d-PSII, and Chl-a-PSII. We show that: (i) all types of PSII have a comparable efficiency in enzyme turnover; (ii) the modified energy gaps on the acceptor side of Chl-d-PSII favour recombination via PD1+Phe- repopulation, leading to increased singlet oxygen production and greater sensitivity to high-light damage compared to Chl-a-PSII and Chl-f-PSII; (iii) the acceptor-side energy gaps in Chl-f-PSII are tuned to avoid harmful back reactions, favouring resilience to photodamage over efficiency of light usage. The results are explained by the differences in the redox tuning of the electron transfer cofactors Phe and QA and in the number and layout of the chlorophylls that share the excitation energy with the primary electron donor. PSII has adapted to lower energy in two distinct ways, each appropriate for its specific environment but with different functional penalties.


Algae, plants and cyanobacteria perform a process called photosynthesis, in which carbon dioxide and water are converted into oxygen and energy-rich carbon compounds. The first step of this process involves an enzyme called photosystem II, which uses light energy to extract electrons from water to help capture the carbon dioxide. If the photosystem absorbs too much light, compounds known as reactive oxygen species are produced in quantities that damage the photosystem and kill the cell. To ensure that the photosystem works efficiently and to protect it from damage, about half of the energy from the absorbed light is dissipated as heat, while the rest of the energy is stored in the products of photosynthesis. The standard form of photosystem II uses the energy of visible light, but some cyanobacteria contain different types of photosystem II, which do the same chemical reactions using lower energy far-red light. One type of far-red photosystem II is found in Acaryochloris marina, a cyanobacterium living in stable levels of far-red light, shaded from visible light. The other type is found in a cyanobacterium called Chroococcidiopsis thermalis, which can switch between using its far-red photosystem II when shaded from visible light and using its standard photosystem II when exposed to it. Being able to work with less energy, the two types of far-red photosystem II appear to be more efficient than the standard one, but it has been unclear if there were any downsides to this trait. Viola et al. compared the standard photosystem II with the far-red photosystem II types from C. thermalis and A. marina by measuring the efficiency of these enzymes, the quantity of reactive oxygen species produced, and the resulting light-induced damage. The experiments revealed that the far-red photosystem II of A. marina is highly efficient but produces elevated levels of reactive oxygen species if exposed to high light conditions. On the other hand, the far-red photosystem II of C. thermalis is less efficient in collecting and using far-red light, but is more robust, producing fewer reactive oxygen species. Despite these tradeoffs, engineering crop plants or algae that could use far-red photosynthesis may help boost food and biomass production. A better understanding of the trade-offs between efficiency and resilience in the two types of far-red photosystem II could determine which features would be beneficial, and under what conditions. This work also improves our knowledge of how the standard photosystem II balances light absorption and damage limitation to work efficiently in a variable environment.


Asunto(s)
Clorofila , Complejo de Proteína del Fotosistema II , Clorofila A , Transporte de Electrón , Oxidación-Reducción , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
6.
J Am Chem Soc ; 144(16): 7171-7180, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35421304

RESUMEN

Photosystem II (PSII) catalyzes light-driven water oxidization, releasing O2 into the atmosphere and transferring the electrons for the synthesis of biomass. However, despite decades of structural and functional studies, the water oxidation mechanism of PSII has remained puzzling and a major challenge for modern chemical research. Here, we show that PSII catalyzes redox-triggered proton transfer between its oxygen-evolving Mn4O5Ca cluster and a nearby cluster of conserved buried ion-pairs, which are connected to the bulk solvent via a proton pathway. By using multi-scale quantum and classical simulations, we find that oxidation of a redox-active Tyrz (Tyr161) lowers the reaction barrier for the water-mediated proton transfer from a Ca2+-bound water molecule (W3) to Asp61 via conformational changes in a nearby ion-pair (Asp61/Lys317). Deprotonation of this W3 substrate water triggers its migration toward Mn1 to a position identified in recent X-ray free-electron laser (XFEL) experiments [Ibrahim et al. Proc. Natl. Acad. Sci. USA 2020, 117, 12,624-12,635]. Further oxidation of the Mn4O5Ca cluster lowers the proton transfer barrier through the water ligand sphere of the Mn4O5Ca cluster to Asp61 via a similar ion-pair dissociation process, while the resulting Mn-bound oxo/oxyl species leads to O2 formation by a radical coupling mechanism. The proposed redox-coupled protonation mechanism shows a striking resemblance to functional motifs in other enzymes involved in biological energy conversion, with an interplay between hydration changes, ion-pair dynamics, and electric fields that modulate the catalytic barriers.


Asunto(s)
Complejo de Proteína del Fotosistema II , Protones , Electrones , Oxidación-Reducción , Oxígeno/química , Complejo de Proteína del Fotosistema II/química , Agua/química
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115403

RESUMEN

Photosystem II (PSII), the water/plastoquinone photo-oxidoreductase, plays a key energy input role in the biosphere. [Formula: see text], the reduced semiquinone form of the nonexchangeable quinone, is often considered capable of a side reaction with O2, forming superoxide, but this reaction has not yet been demonstrated experimentally. Here, using chlorophyll fluorescence in plant PSII membranes, we show that O2 does oxidize [Formula: see text] at physiological O2 concentrations with a t1/2 of 10 s. Superoxide is formed stoichiometrically, and the reaction kinetics are controlled by the accessibility of O2 to a binding site near [Formula: see text], with an apparent dissociation constant of 70 ± 20 µM. Unexpectedly, [Formula: see text] could only reduce O2 when bicarbonate was absent from its binding site on the nonheme iron (Fe2+) and the addition of bicarbonate or formate blocked the O2-dependant decay of [Formula: see text] These results, together with molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations, indicate that electron transfer from [Formula: see text] to O2 occurs when the O2 is bound to the empty bicarbonate site on Fe2+ A protective role for bicarbonate in PSII was recently reported, involving long-lived [Formula: see text] triggering bicarbonate dissociation from Fe2+ [Brinkert et al, Proc. Natl. Acad. Sci. U.S.A. 113, 12144-12149 (2016)]. The present findings extend this mechanism by showing that bicarbonate release allows O2 to bind to Fe2+ and to oxidize [Formula: see text] This could be beneficial by oxidizing [Formula: see text] and by producing superoxide, a chemical signal for the overreduced state of the electron transfer chain.


Asunto(s)
Bicarbonatos/metabolismo , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Chlamydomonas reinhardtii/metabolismo , Clorofila/metabolismo , Transporte de Electrón/fisiología , Formiatos/metabolismo , Oxidación-Reducción , Quinonas/metabolismo , Spinacia oleracea/metabolismo
8.
Biochim Biophys Acta Bioenerg ; 1862(6): 148400, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33617856

RESUMEN

Oxygenic photosynthesis starts with the oxidation of water to O2, a light-driven reaction catalysed by photosystem II. Cyanobacteria are the only prokaryotes capable of water oxidation and therefore, it is assumed that the origin of oxygenic photosynthesis is a late innovation relative to the origin of life and bioenergetics. However, when exactly water oxidation originated remains an unanswered question. Here we use phylogenetic analysis to study a gene duplication event that is unique to photosystem II: the duplication that led to the evolution of the core antenna subunits CP43 and CP47. We compare the changes in the rates of evolution of this duplication with those of some of the oldest well-described events in the history of life: namely, the duplication leading to the Alpha and Beta subunits of the catalytic head of ATP synthase, and the divergence of archaeal and bacterial RNA polymerases and ribosomes. We also compare it with more recent events such as the duplication of Cyanobacteria-specific FtsH metalloprotease subunits and the radiation leading to Margulisbacteria, Sericytochromatia, Vampirovibrionia, and other clades containing anoxygenic phototrophs. We demonstrate that the ancestral core duplication of photosystem II exhibits patterns in the rates of protein evolution through geological time that are nearly identical to those of the ATP synthase, RNA polymerase, or the ribosome. Furthermore, we use ancestral sequence reconstruction in combination with comparative structural biology of photosystem subunits, to provide additional evidence supporting the premise that water oxidation had originated before the ancestral core duplications. Our work suggests that photosynthetic water oxidation originated closer to the origin of life and bioenergetics than can be documented based on phylogenetic or phylogenomic species trees alone.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Evolución Molecular , Oxígeno/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Oxidación-Reducción , Filogenia
9.
Proc Natl Acad Sci U S A ; 117(37): 23158-23164, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32868421

RESUMEN

The recently discovered, chlorophyll-f-containing, far-red photosystem II (FR-PSII) supports far-red light photosynthesis. Participation and kinetics of spectrally shifted far-red pigments are directly observable and separated from that of bulk chlorophyll-a We present an ultrafast transient absorption study of FR-PSII, investigating energy transfer and charge separation processes. Results show a rapid subpicosecond energy transfer from chlorophyll-a to the long-wavelength chlorophylls-f/d The data demonstrate the decay of an ∼720-nm negative feature on the picosecond-to-nanosecond timescales, coinciding with charge separation, secondary electron transfer, and stimulated emission decay. An ∼675-nm bleach attributed to the loss of chl-a absorption due to the formation of a cation radical, PD1+•, is only fully developed in the nanosecond spectra, indicating an unusually delayed formation. A major spectral feature on the nanosecond timescale at 725 nm is attributed to an electrochromic blue shift of a FR-chlorophyll among the reaction center pigments. These time-resolved observations provide direct experimental support for the model of Nürnberg et al. [D. J. Nürnberg et al., Science 360, 1210-1213 (2018)], in which the primary electron donor is a FR-chlorophyll and the secondary donor is chlorophyll-a (PD1 of the central chlorophyll pair). Efficient charge separation also occurs using selective excitation of long-wavelength chlorophylls-f/d, and the localization of the excited state on P720* points to a smaller (entropic) energy loss compared to conventional PSII, where the excited state is shared over all of the chlorin pigments. This has important repercussions on understanding the overall energetics of excitation energy transfer and charge separation reactions in FR-PSII.


Asunto(s)
Clorofila/metabolismo , Transferencia de Energía/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Transporte de Electrón/fisiología , Cinética , Luz , Análisis Espectral/métodos
10.
Biochim Biophys Acta Bioenerg ; 1861(10): 148248, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32565079

RESUMEN

Far-red light (FRL) Photosystem II (PSII) isolated from Chroococcidiopsis thermalis is studied using parallel analyses of low-temperature absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopies in conjunction with fluorescence measurements. This extends earlier studies (Nurnberg et al 2018 Science 360 (2018) 1210-1213). We confirm that the chlorophyll absorbing at 726 nm is the primary electron donor. At 1.8 K efficient photochemistry occurs when exciting at 726 nm and shorter wavelengths; but not at wavelengths longer than 726 nm. The 726 nm absorption peak exhibits a 21 ±â€¯4 cm-1 electrochromic shift due to formation of the semiquinone anion, QA-. Modelling indicates that no other FRL pigment is located among the 6 central reaction center chlorins: PD1, PD2 ChlD1, ChlD2, PheoD1 and PheoD2. Two of these chlorins, ChlD1 and PD2, are located at a distance and orientation relative to QA- so as to account for the observed electrochromic shift. Previously, ChlD1 was taken as the most likely candidate for the primary donor based on spectroscopy, sequence analysis and mechanistic arguments. Here, a more detailed comparison of the spectroscopic data with exciton modelling of the electrochromic pattern indicates that PD2 is at least as likely as ChlD1 to be responsible for the 726 nm absorption. The correspondence in sign and magnitude of the CD observed at 726 nm with that predicted from modelling favors PD2 as the primary donor. The pros and cons of PD2 vs ChlD1 as the location of the FRL-primary donor are discussed.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Cianobacterias/enzimología , Transporte de Electrón , Complejo de Proteína del Fotosistema II/química , Ficocianina/química
11.
Biochemistry ; 59(26): 2442-2449, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32574489

RESUMEN

The effect of bicarbonate (HCO3-) on photosystem II (PSII) activity was discovered in the 1950s, but only recently have its molecular mechanisms begun to be clarified. Two chemical mechanisms have been proposed. One is for the electron-donor side, in which mobile HCO3- enhances and possibly regulates water oxidation by acting as proton acceptor, after which it dissociates into CO2 and H2O. The other is for the electron-acceptor side, in which (i) reduction of the QA quinone leads to the release of HCO3- from its binding site on the non-heme iron and (ii) the Em potential of the QA/QA•- couple increases when HCO3- dissociates. This suggested a protective/regulatory role of HCO3- as it is known that increasing the Em of QA decreases the extent of back-reaction-associated photodamage. Here we demonstrate, using plant thylakoids, that time-resolved membrane-inlet mass spectrometry together with 13C isotope labeling of HCO3- allows donor- and acceptor-side formation of CO2 by PSII to be demonstrated and distinguished, which opens the door for future studies of the importance of both mechanisms under in vivo conditions.


Asunto(s)
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Spinacia oleracea/metabolismo , Tilacoides/metabolismo , Transporte de Electrón , Oxidación-Reducción
12.
Proc Natl Acad Sci U S A ; 116(39): 19458-19463, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31488720

RESUMEN

Photosystem II (PSII), the light-driven water/plastoquinone photooxidoreductase, is of central importance in the planetary energy cycle. The product of the reaction, plastohydroquinone (PQH2), is released into the membrane from the QB site, where it is formed. A plastoquinone (PQ) from the membrane pool then binds into the QB site. Despite their functional importance, the thermodynamic properties of the PQ in the QB site, QB, in its different redox forms have received relatively little attention. Here we report the midpoint potentials (Em ) of QB in PSII from Thermosynechococcus elongatus using electron paramagnetic resonance (EPR) spectroscopy: Em QB/QB•- ≈ 90 mV, and Em QB•-/QBH2 ≈ 40 mV. These data allow the following conclusions: 1) The semiquinone, QB•-, is stabilized thermodynamically; 2) the resulting Em QB/QBH2 (∼65 mV) is lower than the Em PQ/PQH2 (∼117 mV), and the difference (ΔE ≈ 50 meV) represents the driving force for QBH2 release into the pool; 3) PQ is ∼50× more tightly bound than PQH2; and 4) the difference between the Em QB/QB•- measured here and the Em QA/QA•- from the literature is ∼234 meV, in principle corresponding to the driving force for electron transfer from QA•- to QB The pH dependence of the thermoluminescence associated with QB•- provided a functional estimate for this energy gap and gave a similar value (≥180 meV). These estimates are larger than the generally accepted value (∼70 meV), and this is discussed. The energetics of QB in PSII are comparable to those in the homologous purple bacterial reaction center.


Asunto(s)
Benzoquinonas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Quinonas/metabolismo , Cianobacterias/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Transporte de Electrón , Cinética , Luz , Oxidación-Reducción , Fotosíntesis/fisiología , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , Termodinámica , Thermosynechococcus , Agua/química
13.
Trends Plant Sci ; 24(11): 1008-1021, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31351761

RESUMEN

One of the earliest events in the molecular evolution of photosynthesis is the structural and functional specialisation of type I (ferredoxin-reducing) and type II (quinone-reducing) reaction centres. In this opinion article we point out that the homodimeric type I reaction centre of heliobacteria has a calcium-binding site with striking structural similarities to the Mn4CaO5 cluster of photosystem II. These similarities indicate that most of the structural elements required to evolve water oxidation chemistry were present in the earliest reaction centres. We suggest that the divergence of type I and type II reaction centres was made possible by a drastic structural shift linked to a change in redox properties that coincided with or facilitated the origin of photosynthetic water oxidation.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema II , Evolución Molecular , Oxidación-Reducción , Oxígeno , Agua
14.
J Biol Chem ; 294(24): 9367-9376, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31043481

RESUMEN

The biological route for nitrogen gas entering the biosphere is reduction to ammonia by the nitrogenase enzyme, which is inactivated by oxygen. Three types of nitrogenase exist, the least-studied of which is the iron-only nitrogenase. The Anf3 protein in the bacterium Rhodobacter capsulatus is essential for diazotrophic (i.e. nitrogen-fixing) growth with the iron-only nitrogenase, but its enzymatic activity and function are unknown. Here, we biochemically and structurally characterize Anf3 from the model diazotrophic bacterium Azotobacter vinelandii Determining the Anf3 crystal structure to atomic resolution, we observed that it is a dimeric flavocytochrome with an unusually close interaction between the heme and the FAD cofactors. Measuring the reduction potentials by spectroelectrochemical redox titration, we observed values of -420 ± 10 and -330 ± 10 mV for the two FAD potentials and -340 ± 1 mV for the heme. We further show that Anf3 accepts electrons from spinach ferredoxin and that Anf3 consumes oxygen without generating superoxide or hydrogen peroxide. We predict that Anf3 protects the iron-only nitrogenase from oxygen inactivation by functioning as an oxidase in respiratory protection, with flavodoxin or ferredoxin as the physiological electron donors.


Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Nitrógeno/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , Fijación del Nitrógeno , Oxidación-Reducción , Oxidorreductasas/química , Conformación Proteica
15.
Biochim Biophys Acta Bioenerg ; 1860(4): 297-309, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30703365

RESUMEN

The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1- radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA- formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430 nm during the S-state cycle.


Asunto(s)
Proteínas Bacterianas/química , Clorofila/química , Cianobacterias/enzimología , Luz , Complejo de Proteína del Fotosistema II/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clorofila/genética , Clorofila/metabolismo , Cianobacterias/genética , Transporte de Electrón/fisiología , Mutagénesis Sitio-Dirigida , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo
16.
Geobiology ; 17(2): 127-150, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30411862

RESUMEN

Photosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here, we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, we hypothesize that this early Archean photosystem was capable of water oxidation to oxygen and had already evolved protection mechanisms against the formation of reactive oxygen species. This would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.


Asunto(s)
Proteínas Bacterianas/análisis , Cianobacterias/genética , Evolución Molecular , Complejo de Proteína del Fotosistema II/análisis , Teorema de Bayes , Cianobacterias/fisiología , Fotosíntesis , Filogenia
17.
Phys Chem Chem Phys ; 21(3): 1224-1234, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30566126

RESUMEN

The recent discovery of extremely red-shifted chlorophyll f pigments in both photosystem I (PSI) and photosystem II has led to the conclusion that chlorophyll f plays a role not only in the energy transfer, but also in the charge separation processes [Nürnberg et al., Science, 2018, 360, 1210-1213]. We have employed ultrafast transient infrared absorption spectroscopy to study the contribution of far-red light absorbing chlorophyll f to energy transfer and charge separation processes in far-red light-grown PSI (FRL-PSI) from the cyanobacterium Chroococcidiopsis thermalis PCC 7203. We compare the kinetics and spectra of FRL-grown PSI excited at 670 nm and 740 nm wavelengths to those of white light-grown PSI (WL-PSI) obtained at 675 nm excitation. We report a fast decay of excited state features of chlorophyll a and complete energy transfer from chlorophyll a to chlorophyll f in FRL-PSI upon 670 nm excitation, as indicated by a frequency shift in a carbonyl absorption band occurring within a 1 ps timescale. While the WL-PSI measurements support the assignment of initial charge separation to A-1+˙A0-˙ [Di Donato et al., Biochemistry, 2011, 50, 480-490] from the kinetics of a distinct cation feature at 1710 cm-1, in the case of FRL-PSI, small features at 1715 cm-1 from the chlorophyll cation are present from sub-ps delays instead, supporting the replacement of the A-1 pigment with chlorophyll f. Comparisons of nanosecond spectra show that charge separation proceeds with 740 nm excitation, which selectively excites chlorophyll f, and modifications in specific carbonyl absorption bands assigned to P700+˙ minus P700 and A1-˙ minus A1 indicate dielectric differences of FRL-PSI compared to WL-PSI in one or both of the two electron transfer branches of FRL-PSI.


Asunto(s)
Clorofila/análogos & derivados , Complejo de Proteína del Fotosistema I/química , Clorofila/química , Clorofila/efectos de la radiación , Cianobacterias/enzimología , Transferencia de Energía , Rayos Infrarrojos , Cinética , Complejo de Proteína del Fotosistema I/efectos de la radiación , Espectrofotometría Infrarroja/métodos , Synechococcus/enzimología
18.
J Am Chem Soc ; 140(51): 17923-17931, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30188698

RESUMEN

Protein film photoelectrochemistry has previously been used to monitor the activity of photosystem II, the water-plastoquinone photooxidoreductase, but the mechanistic information attainable from a three-electrode setup has remained limited. Here we introduce the four-electrode rotating ring disk electrode technique for quantifying light-driven reaction kinetics and mechanistic pathways in real time at the enzyme-electrode interface. This setup allows us to study photochemical H2O oxidation in photosystem II and to gain an in-depth understanding of pathways that generate reactive oxygen species. The results show that photosystem II reacts with O2 through two main pathways that both involve a superoxide intermediate to produce H2O2. The first pathway involves the established chlorophyll triplet-mediated formation of singlet oxygen, which is followed by its reduction to superoxide at the electrode surface. The second pathway is specific for the enzyme/electrode interface: an exposed antenna chlorophyll is sufficiently close to the electrode for rapid injection of an electron to form a highly reducing chlorophyll anion, which reacts with O2 in solution to produce O2•-. Incomplete H2O oxidation does not significantly contribute to reactive oxygen formation in our conditions. The rotating ring disk electrode technique allows the chemical reactivity of photosystem II to be studied electrochemically and opens several avenues for future investigation.

19.
Science ; 360(6394): 1210-1213, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29903971

RESUMEN

Photosystems I and II convert solar energy into the chemical energy that powers life. Chlorophyll a photochemistry, using red light (680 to 700 nm), is near universal and is considered to define the energy "red limit" of oxygenic photosynthesis. We present biophysical studies on the photosystems from a cyanobacterium grown in far-red light (750 nm). The few long-wavelength chlorophylls present are well resolved from each other and from the majority pigment, chlorophyll a. Charge separation in photosystem I and II uses chlorophyll f at 745 nm and chlorophyll f (or d) at 727 nm, respectively. Each photosystem has a few even longer-wavelength chlorophylls f that collect light and pass excitation energy uphill to the photochemically active pigments. These photosystems function beyond the red limit using far-red pigments in only a few key positions.


Asunto(s)
Clorofila/análogos & derivados , Cianobacterias/efectos de la radiación , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/efectos de la radiación , Complejo de Proteína del Fotosistema II/efectos de la radiación , Clorofila/química , Clorofila/efectos de la radiación , Clorofila A , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Luz , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química
20.
Plant Physiol ; 177(3): 1277-1285, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29794021

RESUMEN

Bicarbonate removal from the nonheme iron at the acceptor side of photosystem II (PSII) was shown recently to shift the midpoint potential of the primary quinone acceptor QA to a more positive potential and lowers the yield of singlet oxygen (1O2) production. The presence of QA- results in weaker binding of bicarbonate, suggesting a redox-based regulatory and protective mechanism where loss of bicarbonate or exchange of bicarbonate by other small carboxylic acids may protect PSII against 1O2 in vivo under photorespiratory conditions. Here, we compared the properties of QA in the Arabidopsis (Arabidopsis thaliana) photorespiration mutant deficient in peroxisomal HYDROXYPYRUVATE REDUCTASE1 (hpr1-1), which accumulates glycolate in leaves, with the wild type. Photosynthetic electron transport was affected in the mutant, and chlorophyll fluorescence showed slower electron transport between QA and QB in the mutant. Glycolate induced an increase in the temperature maximum of thermoluminescence emission, indicating a shift of the midpoint potential of QA to a more positive value. The yield of 1O2 production was lowered in thylakoid membranes isolated from hpr1-1 compared with the wild type, consistent with a higher potential of QA/QA- In addition, electron donation to photosystem I was affected in hpr1-1 at higher light intensities, consistent with diminished electron transfer out of PSII. This study indicates that replacement of bicarbonate at the nonheme iron by a small carboxylate anion occurs in plants in vivo. These findings suggested that replacement of the bicarbonate on the nonheme iron by glycolate may represent a regulatory mechanism that protects PSII against photooxidative stress under low-CO2 conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Glicolatos/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bicarbonatos/metabolismo , Transporte de Electrón , Fluorescencia , Glicolatos/farmacología , Mediciones Luminiscentes , Mutación , Complejo de Proteína del Fotosistema II/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Oxígeno Singlete/metabolismo , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/metabolismo , Tilacoides/efectos de los fármacos , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...