Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Physiol Rep ; 12(10): e16038, 2024 May.
Article En | MEDLINE | ID: mdl-38757249

This study investigated the effects of EPO on hemoglobin (Hgb) and hematocrit (Hct), time trial (TT) performance, substrate oxidation, and skeletal muscle phenotype throughout 28 days of strenuous exercise. Eight males completed this longitudinal controlled exercise and feeding study using EPO (50 IU/kg body mass) 3×/week for 28 days. Hgb, Hct, and TT performance were assessed PRE and on Days 7, 14, 21, and 27 of EPO. Rested/fasted muscle obtained PRE and POST EPO were analyzed for gene expression, protein signaling, fiber type, and capillarization. Substrate oxidation and glucose turnover were assessed during 90-min of treadmill load carriage (LC; 30% body mass; 55 ± 5% V̇O2peak) exercise using indirect calorimetry, and 6-6-[2H2]-glucose PRE and POST. Hgb and Hct increased, and TT performance improved on Days 21 and 27 compared to PRE (p < 0.05). Energy expenditure, fat oxidation, and metabolic clearance rate during LC increased (p < 0.05) from PRE to POST. Myofiber type, protein markers of mitochondrial biogenesis, and capillarization were unchanged PRE to POST. Transcriptional regulation of mitochondrial activity and fat metabolism increased from PRE to POST (p < 0.05). These data indicate EPO administration during 28 days of strenuous exercise can enhance aerobic performance through improved oxygen carrying capacity, whole-body and skeletal muscle fat metabolism.


Erythropoietin , Exercise , Muscle, Skeletal , Oxidation-Reduction , Male , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Adult , Erythropoietin/metabolism , Erythropoietin/pharmacology , Oxidation-Reduction/drug effects , Exercise/physiology , Hemoglobins/metabolism , Hematocrit , Energy Metabolism/drug effects , Young Adult , Lipid Metabolism/drug effects
2.
BMJ Mil Health ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658041

Soldiers typically perform physically demanding tasks while wearing military uniforms and tactical footwear. New research has revealed a substantial increase of ~10% in energetic cost of walking when wearing modern combat boots versus running shoes. One approach to mitigating these costs is to follow in the footsteps of recent innovations in athletic footwear that led to the development of 'super shoes', that is, running shoes designed to lower the energetic cost of locomotion and maximise performance. We modelled the theoretical effects of optimised combat boot construction on physical performance and heat strain with the intent of spurring similarly innovative research and development of 'super boots' for soldiers. We first assessed the theoretical benefits of super boots on 2-mile run performance in a typical US Army soldier using the model developed by Kipp and colleagues. We then used the Heat Strain Decision Aid thermoregulatory model to determine the metabolic savings required for a physiologically meaningful decrease in heat strain in various scenarios. Combat boots that impart a 10% improvement in running economy would result in 7.9%-15.1% improvement in 2-mile run time, for faster to slower runners, respectively. Our thermal modelling revealed that a 10% metabolic savings would more than suffice for a 0.25°C reduction in heat strain for the vast majority of work intensities and durations in both hot-dry and hot-humid environments. These findings highlight the impact that innovative military super boots would have on physical performance and heat strain in soldiers, which could potentially maximise the likelihood of mission success in real-world scenarios.

3.
bioRxiv ; 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38562735

Gram-positive bacteria utilize a Fatty Acid Kinase (FAK) complex to harvest fatty acids from the environment. The complex, consisting of the fatty acid kinase, FakA, and an acyl carrier protein, FakB, is known to impact virulence and disease outcomes. However, FAK's structure and enzymatic mechanism remain poorly understood. Here, we used a combination of modeling, biochemical, and cell-based approaches to establish critical details of FAK activity. Solved structures of the apo and ligand-bound FakA kinase domain captured the protein state through ATP hydrolysis. Additionally, targeted mutagenesis of an understudied FakA Middle domain identified critical residues within a metal-binding pocket that contribute to FakA dimer stability and protein function. Regarding the complex, we demonstrated nanomolar affinity between FakA and FakB and generated computational models of the complex's quaternary structure. Together, these data provide critical insight into the structure and function of the FAK complex which is essential for understanding its mechanism.

4.
Nucleic Acids Res ; 52(9): 5392-5405, 2024 May 22.
Article En | MEDLINE | ID: mdl-38634780

N6-(2-deoxy-α,ß-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood. To address this we investigated how DNA polymerase ß (Pol ß), a model mammalian polymerase, bypasses a templating Fapy•dG, inserts Fapy•dGTP, and extends from Fapy•dG at the primer terminus. When Fapy•dG is present in the template, Pol ß incorporates TMP less efficiently than either dCMP or dAMP. Kinetic analysis revealed that Fapy•dGTP is a poor substrate but is incorporated ∼3-times more efficiently opposite dA than dC. Extension from Fapy•dG at the 3'-terminus of a nascent primer is inefficient due to the primer terminus being poorly positioned for catalysis. Together these data indicate that mutagenic bypass of Fapy•dG is likely to be the source of the mutagenic effects of the lesion and not Fapy•dGTP. These experiments increase our understanding of the promutagenic effects of Fapy•dG.


DNA Polymerase beta , DNA Replication , Formamides , Furans , Pyrimidines , Humans , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , DNA Polymerase beta/metabolism , DNA Polymerase beta/chemistry , Kinetics , Models, Molecular , Pyrimidines/chemistry , Pyrimidines/metabolism , Furans/chemistry , Furans/metabolism , Formamides/metabolism , Mutagenesis
5.
bioRxiv ; 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38293220

N6-(2-deoxy-α,ß-D-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood. To address this we investigated how DNA polymerase ß (Pol ß), a model mammalian polymerase, bypasses a templating Fapy•dG, inserts Fapy•dGTP, and extends from Fapy•dG at the primer terminus. When Fapy•dG is present in the template, Pol ß incorporates TMP less efficiently than either dCMP or dAMP. Kinetic analysis revealed that Fapy•dGTP is a poor substrate but is incorporated ∼3-times more efficiently opposite dA than dC. Extension from Fapy•dG at the 3'-terminus of a nascent primer is inefficient due to the primer terminus being poorly positioned for catalysis. Together these data indicate that mutagenic bypass of Fapy•dG is likely to be the source of the mutagenic effects of the lesion and not Fapy•dGTP. These experiments increase our understanding of the promutagenic effects of Fapy•dG.

6.
Prehosp Disaster Med ; 39(1): 85-93, 2024 Feb.
Article En | MEDLINE | ID: mdl-38221901

INTRODUCTION: Interest in nuclear power as a cleaner and alternative energy source is increasing in many countries. Despite the relative safety of nuclear power, large-scale disasters such as the Fukushima Daiichi (Japan) and Chernobyl (Ukraine) meltdowns are a reminder that emergency preparedness and safety should be a priority. In an emergency situation, there is a need to balance the tension between a rapid response, preventing harm, protecting communities, and safeguarding workers and responders. The first line of defense for workers and responders is personal protective equipment (PPE), but the needs vary by situation and location. Better understanding this is vital to inform PPE needs for workers and responders during nuclear and radiological power plant accidents and emergencies. STUDY OBJECTIVE: The aim of this study was to identify and describe the PPE used by different categories of workers and responders during nuclear and radiological power plant accidents and emergencies. METHODS: A systematic literature review format following the PRISMA 2020 guidelines was utilized. Databases SCOPUS, PubMed, EMBASE, INSPEC, and Web of Science were used to retrieve articles that examined the PPE recommended or utilized by responders to nuclear radiological disasters at nuclear power plants (NPPs). RESULTS: The search terms yielded 6,682 publications. After removal of duplicates, 5,587 sources continued through the systematic review process. This yielded 23 total articles for review, and five articles were added manually for a total of 28 articles reviewed in this study. Plant workers, decontamination or decommissioning workers, paramedics, Emergency Medical Services (EMS), emergency medical technicians, military, and support staff were the categories of responders identified for this type of disaster. Literature revealed that protective suits were the most common item of PPE required or recommended, followed by respirators and gloves (among others). However, adherence issues, human errors, and physiological factors frequently emerged as hinderances to the efficacy of these equipment in preventing contamination or efficiency of these responders. CONCLUSION: If worn correctly and consistently, PPE will reduce exposure to ionizing radiation during a nuclear and radiological accident or disaster. For the best results, standardization of equipment recommendations, clear guidelines, and adequate training in its use is paramount. As fields related to nuclear power and nuclear medicine expand, responder safety should be at the forefront of emergency preparedness and response planning.


Disasters , Fukushima Nuclear Accident , Nuclear Medicine , Humans , Emergencies , Nuclear Power Plants , Personal Protective Equipment
8.
Am J Physiol Endocrinol Metab ; 325(5): E466-E479, 2023 11 01.
Article En | MEDLINE | ID: mdl-37729021

Exercise training modifies lipid metabolism in skeletal muscle, but the effect of exercise training on intramyocellular lipid droplet (LD) abundance, size, and intracellular distribution in adults with obesity remains elusive. This study compared high-intensity interval training (HIIT) with more conventional moderate-intensity continuous training (MICT) on intramyocellular lipid content, as well as LD characteristics (size and number) and abundance within the intramyofibrillar (IMF) and subsarcolemmal (SS) regions of type I and type II skeletal muscle fibers in adults with obesity. Thirty-six adults with obesity [body mass index (BMI) = 33 ± 3 kg/m2] completed 12 wk (4 days/wk) of either HIIT (10 × 1 min, 90% HRmax + 1-min active recovery; n = 19) or MICT (45-min steady-state exercise, 70% HRmax; n = 17), while on a weight-maintaining diet throughout training. Skeletal muscle biopsies were collected from the vastus lateralis before and after training, and intramyocellular lipid content and intracellular LD distribution were measured by immunofluorescence microscopy. Both MICT and HIIT increased total intramyocellular lipid content by more than 50% (P < 0.01), which was attributed to a greater LD number per µm2 in the IMF region of both type I and type II muscle fibers (P < 0.01). Our findings also suggest that LD lipophagy (autophagy-mediated LD degradation) may be transiently upregulated the day after the last exercise training session (P < 0.02 for both MICT and HIIT). In summary, exercise programs for adults with obesity involving either MICT or HIIT increased skeletal muscle LD abundance via a greater number of LDs in the IMF region of the myocyte, thereby providing more lipid in close proximity to the site of energy production during exercise.NEW & NOTEWORTHY In this study, 12 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) enhanced skeletal muscle lipid abundance by increasing lipid droplet number within the intramyofibrillar (IMF) region of muscle. Because the IMF associates with high energy production during muscle contraction, this adaptation may enhance lipid oxidation during exercise. Despite differences in training intensity and energy expenditure between MICT and HIIT, their effects on muscle lipid abundance and metabolism were remarkably similar.


High-Intensity Interval Training , Lipid Droplets , Adult , Humans , Obesity/therapy , Exercise/physiology , Energy Metabolism/physiology , Lipids
9.
Methods Mol Biol ; 2701: 55-76, 2023.
Article En | MEDLINE | ID: mdl-37574475

Eukaryotic DNA exists in chromatin, where the genomic DNA is packaged into a fundamental repeating unit known as the nucleosome. In this chromatin environment, our genomic DNA is constantly under attack by exogenous and endogenous stressors that can lead to DNA damage. Importantly, this DNA damage must be repaired to prevent the accumulation of mutations and ensure normal cellular function. To date, most in-depth biochemical studies of DNA repair proteins have been performed in the context of free duplex DNA. However, chromatin can serve as a barrier that DNA repair enzymes must navigate in order find, access, and process DNA damage in the cell. To facilitate future studies of DNA repair in chromatin, we describe a protocol for generating nucleosome containing site-specific DNA damage that can be utilized for a variety of in vitro applications. This protocol describes several key steps including how to generate damaged DNA oligonucleotides, the expression and purification of recombinant histones, the refolding of histone complexes, and the reconstitution of nucleosomes containing site-specific DNA damage. These methods will enable researchers to generate nucleosomes containing site-specific DNA damage for extensive biochemical and structural studies of DNA repair in the nucleosome.


Chromatin , Nucleosomes , Nucleosomes/genetics , Chromatin/genetics , DNA Damage , Histones/genetics , Histones/metabolism , DNA Repair , DNA/chemistry
10.
Obesity (Silver Spring) ; 31(5): 1347-1361, 2023 05.
Article En | MEDLINE | ID: mdl-36988872

OBJECTIVE: The aims of this study were: 1) to assess relationships among insulin-mediated glucose uptake with standard clinical outcomes and deep-phenotyping measures (including fatty acid [FA] rate of appearance [FA Ra] into the systemic circulation); and 2) to examine the contribution of adipocyte size, fibrosis, and proteomic profile to FA Ra regulation. METHODS: A total of 66 adults with obesity (BMI = 34 [SD 3] kg/m2 ) were assessed for insulin sensitivity (hyperinsulinemic-euglycemic clamp), and stable isotope dilution methods quantified glucose, FA, and glycerol kinetics in vivo. Abdominal subcutaneous adipose tissue (aSAT) and skeletal muscle biopsies were collected, and magnetic resonance imaging quantified liver and visceral fat content. RESULTS: Insulin-mediated FA Ra suppression associated with insulin-mediated glucose uptake (r = 0.51; p < 0.01) and negatively correlated with liver (r = -0.36; p < 0.01) and visceral fat (r = -0.42; p < 0.01). aSAT proteomics from subcohorts of participants with low FA Ra suppression (n = 8) versus high FA Ra suppression (n = 8) demonstrated greater extracellular matrix collagen protein in low versus high FA Ra suppression. Skeletal muscle lipidomics (n = 18) revealed inverse correlations of FA Ra suppression with acyl-chain length of acylcarnitine (r = -0.42; p = 0.02) and triacylglycerol (r = -0.51; p < 0.01), in addition to insulin-mediated glucose uptake (acylcarnitine: r = -0.49; p < 0.01, triacylglycerol: r = -0.40; p < 0.01). CONCLUSIONS: Insulin's ability to suppress FA release from aSAT in obesity is related to enhanced insulin-mediated glucose uptake and metabolic health in peripheral tissues.


Insulin Resistance , Insulin , Adult , Humans , Insulin/metabolism , Fatty Acids/metabolism , Proteomics , Obesity/complications , Adipose Tissue/metabolism , Insulin Resistance/physiology , Triglycerides/metabolism , Glucose/metabolism , Glucose Clamp Technique
11.
J Am Coll Health ; : 1-6, 2023 Jan 03.
Article En | MEDLINE | ID: mdl-36595621

Objective: Baylor University established a surveillance system to assess the needs of students and faculty in isolation from SARS-CoV-2 as well as any longer-term symptoms. Participants: Overall, there were 309 responses between March 20 and May 19, 2021. Methods: A survey covering experience in isolation, symptoms, vaccination, and demographic characteristics was emailed to individuals on Day 7 of isolation; a follow-up health survey was sent 30 days later. Results: Only 9.6% of respondents reported needing assistance while in isolation. Nearly 75% of respondents experienced COVID-19 symptoms in isolation, and 31.9% had remaining symptoms after isolation. Older age, being male, and more severe symptoms were associated with longer symptom duration. Those vaccinated had lower odds of developing symptoms and having symptoms remaining post-isolation. Conclusions: The present study adds to our understanding of long-COVID in young adult populations, while providing a framework for similar institutions to sustain operations during a global pandemic.

12.
J Physiol ; 601(3): 407-416, 2023 02.
Article En | MEDLINE | ID: mdl-36518016

In recent years, there has been an explosion of new approaches (technological, methodological, pharmacological, etc.) designed to improve physical performance for athletes, the military and in other applications. The goal of the present discussion is to review and quantify several ways in which physiology can provide important insights about which tools may lead to improved performance (and may therefore be worth resource investment) and which tools are less likely to provide meaningful enhancement. To address these objectives, we review examples of technological solutions/approaches in terms of the magnitude of their potential (or actual) influences: transformational, moderate, ineffective or undetermined. As one example, if there were a technology which significantly increased arterial oxygen partial pressure by 10%, this would be relatively meaningless in healthy people resting at sea level, where it would have a minimal effect on arterial oxygen content. However, there might be specific situations where such an effect would be very helpful, including at high altitude or in some patient populations. We discuss the importance of quantitative evaluation of putative approaches to performance enhancement and highlight the important role of integrative physiologists in the development and critical appraisal of these approaches.


Altitude , Hypoxia , Humans , Acclimatization/physiology , Oxygen Consumption/physiology , Oxygen , Physical Endurance/physiology
13.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R638-R647, 2022 11 01.
Article En | MEDLINE | ID: mdl-36094451

Military and/or emergency services personnel may be required to perform high-intensity physical activity during exposure to elevated inspired carbon dioxide (CO2). Although many of the physiological consequences of hypercapnia are well characterized, the effects of graded increases in inspired CO2 on self-paced endurance performance have not been determined. The aim of this study was to compare the effects of 0%, 2%, and 4% inspired CO2 on 2-mile run performance, as well as physiological and perceptual responses during time trial exercise. Twelve physically active volunteers (peak oxygen uptake = 49 ± 5 mL·kg-1·min-1; 3 women) performed three experimental trials in a randomized, single-blind, crossover manner, breathing 21% oxygen with either 0%, 2%, or 4% CO2. During each trial, participants completed 10 min of walking at ∼40% peak oxygen uptake followed by a self-paced 2-mile treadmill time trial. One participant was unable to complete the 4% CO2 trial due to lightheadedness during the run. Compared with the 0% CO2 trial, run performance was 5 ± 3% and 7 ± 3% slower in the 2% and 4% CO2 trials, respectively (both P < 0.001). Run performance was significantly slower with 4% versus 2% CO2 (P = 0.046). The dose-dependent performance impairments were accompanied by stepwise increases in mean ventilation, despite significant reductions in running speed. Dyspnea and headache were significantly elevated during the 4% CO2 trial compared with both the 0% and 2% trials. Overall, our findings show that graded increases in inspired CO2 impair endurance performance in a stepwise manner in healthy humans.


Carbon Dioxide , Hypercapnia , Female , Humans , Exercise Test , Oxygen , Oxygen Consumption/physiology , Physical Endurance/physiology , Single-Blind Method
15.
J Am Chem Soc ; 144(18): 8054-8065, 2022 05 11.
Article En | MEDLINE | ID: mdl-35499923

N6-(2-Deoxy-α,ß-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido pyrimidine (Fapy•dG) is a prevalent form of genomic DNA damage. Fapy•dG is formed in greater amounts under anoxic conditions than the well-studied, chemically related 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo). Fapy•dG is more mutagenic in mammalian cells than 8-oxodGuo. A distinctive property of Fapy•dG is facile epimerization, but prior works with Fapy•dG analogues have precluded determining its effect on chemistry. We present crystallographic characterization of natural Fapy•dG in duplex DNA and as the template base for DNA polymerase ß (Pol ß). Fapy•dG adopts the ß-anomer when base paired with cytosine but exists as a mixture of α- and ß-anomers when promutagenically base paired with adenine. Rotation about the bond between the glycosidic nitrogen atom and the pyrimidine ring is also affected by the opposing nucleotide. Sodium cyanoborohydride soaking experiments trap the ring-opened Fapy•dG, demonstrating that ring opening and epimerization occur in the crystalline state. Ring opening and epimerization are facilitated by propitious water molecules that are observed in the structures. Determination of Fapy•dG mutagenicity in wild type and Pol ß knockdown HEK 293T cells indicates that Pol ß contributes to G → T transversions but also suppresses G → A transitions. Complementary kinetic studies have determined that Fapy•dG promotes mutagenesis by decreasing the catalytic efficiency of dCMP insertion opposite Fapy•dG, thus reducing polymerase fidelity. Kinetic studies have determined that dCMP incorporation opposite the ß-anomer is ∼90 times faster than the α-anomer. This research identifies the importance of anomer dynamics, a feature unique to formamidopyrimidines, when considering the incorporation of nucleotides opposite Fapy•dG and potentially the repair of this structurally unusual lesion.


Deoxycytidine Monophosphate , Mutagens , 8-Hydroxy-2'-Deoxyguanosine , Animals , DNA/chemistry , DNA Adducts , DNA Damage , DNA Replication , Deoxycytidine Monophosphate/metabolism , Deoxyguanosine , Kinetics , Mammals/genetics , Mammals/metabolism , Mutagenesis , Mutagens/chemistry , Oxidative Stress , Pyrimidines/chemistry
16.
J Sch Health ; 92(7): 646-655, 2022 07.
Article En | MEDLINE | ID: mdl-35383931

BACKGROUND: The closure of schools in response to COVID-19 compromised access to essential meals for many students. The Emergency Meals-to-You program, a public/private partnership, was set up to address this challenge. More than 38.7 million meals were delivered between April and August 2020. This study explores lessons learned and identifies strategies for strengthening food access and security at schools and beyond. METHODS: Qualitative research methods were used. This included interviews and focus groups with participants involved in setting up and delivering the Emergency Meals-to-You program. Data were thematically analyzed using key phrases, ideas, and concepts, and interpreted. RESULTS: The program leveraged a multisectoral approach. Components relied on each other and included: schools, public/private partnership, eligibility, relationships, experience, centralized communication, food quality and branding, logistics, and transport. Strategies identified to strengthen food access focused on integration with emergency management structures, understanding food needs at the school level, building a fully procurable menu, and allowing distribution to be rapidly scaled. CONCLUSIONS: The lessons identified and strategies recommended provide a framework for working across the emergency management spectrum (school to national level) to strengthen food access and availability for students and their families affected by a pandemic, disaster, or crisis situation.


COVID-19 , Food Services , COVID-19/epidemiology , COVID-19/prevention & control , Child , Humans , Meals , Pandemics/prevention & control , Schools , Students
18.
J Physiol ; 600(9): 2127-2146, 2022 05.
Article En | MEDLINE | ID: mdl-35249225

Excessive adipose tissue mass underlies much of the metabolic health complications in obesity. Although exercise training is known to improve metabolic health in individuals with obesity, the effects of exercise training without weight loss on adipose tissue structure and metabolic function remain unclear. Thirty-six adults with obesity (body mass index = 33 ± 3 kg · m-2 ) were assigned to 12 weeks (4 days week-1 ) of either moderate-intensity continuous training (MICT; 70% maximal heart rate, 45 min; n = 17) or high-intensity interval training (HIIT; 90% maximal heart rate, 10 × 1 min; n = 19), maintaining their body weight throughout. Abdominal subcutaneous adipose tissue (aSAT) biopsy samples were collected once before and twice after training (1 day after last exercise and again 4 days later). Exercise training modified aSAT morphology (i.e. reduced fat cell size, increased collagen type 5a3, both P ≤ 0.05, increased capillary density, P = 0.05) and altered protein abundance of factors that regulate aSAT remodelling (i.e. reduced matrix metallopeptidase 9; P = 0.02; increased angiopoietin-2; P < 0.01). Exercise training also increased protein abundance of factors that regulate lipid metabolism (e.g. hormone sensitive lipase and fatty acid translocase; P ≤ 0.03) and key proteins involved in the mitogen-activated protein kinase pathway when measured the day after the last exercise session. However, most of these exercise-mediated changes were no longer significant 4 days after exercise. Importantly, MICT and HIIT induced remarkably similar adaptations in aSAT. Collectively, even in the absence of weight loss, 12 weeks of exercise training induced changes in aSAT structure, as well as factors that regulate metabolism and the inflammatory signal pathway in adults with obesity. KEY POINTS: Exercise training is well-known to improve metabolic health in obesity, although how exercise modifies the structure and metabolic function of adipose tissue, in the absence of weight loss, remains unclear. We report that both 12 weeks of moderate-intensity continuous training (MICT) and 12 weeks of high-intensity interval training (HIIT) induced modifications in adipose tissue structure and factors that regulate adipose tissue remodelling, metabolism and the inflammatory signal pathway in adults with obesity, even without weight loss (with no meaningful differences between MICT and HIIT). The modest modifications in adipose tissue structure in response to 12 weeks of MICT or HIIT did not lead to changes in the rate of fatty acid release from adipose tissue. These results expand our understanding about the effects of two commonly used exercise training prescriptions (MICT and HIIT) on adipose tissue remodelling that may lead to advanced strategies for improving metabolic health outcomes in adults with obesity.


Exercise , Obesity , Adipose Tissue/metabolism , Adult , Exercise/physiology , Fatty Acids/metabolism , Humans , Obesity/metabolism , Subcutaneous Fat/metabolism , Weight Loss
19.
Disaster Med Public Health Prep ; 16(5): 1901-1909, 2022 10.
Article En | MEDLINE | ID: mdl-33678211

Colleges and universities around the world engaged diverse strategies during the COVID-19 pandemic. Baylor University, a community of ˜22,700 individuals, was 1 of the institutions which resumed and sustained operations. The key strategy was establishment of multidisciplinary teams to develop mitigation strategies and priority areas for action. This population-based team approach along with implementation of a "Swiss Cheese" risk mitigation model allowed small clusters to be rapidly addressed through testing, surveillance, tracing, isolation, and quarantine. These efforts were supported by health protocols including face coverings, social distancing, and compliance monitoring. As a result, activities were sustained from August 1 to December 8, 2020. There were 62,970 COVID-19 tests conducted with 1435 people testing positive for a positivity rate of 2.28%. A total of 1670 COVID-19 cases were identified with 235 self-reports. The mean number of tests per week was 3500 with approximately 80 of these positive (11/d). More than 60 student tracers were trained with over 120 personnel available to contact trace, at a ratio of 1 per 400 university members. The successes and lessons learned provide a framework and pathway for similar institutions to mitigate the ongoing impacts of COVID-19 and sustain operations during a global pandemic.


COVID-19 , Humans , COVID-19/epidemiology , Pandemics/prevention & control , Universities , SARS-CoV-2 , Quarantine
20.
ACS ES T Water ; 2(11): 1929-1943, 2022 Nov 11.
Article En | MEDLINE | ID: mdl-37552714

Wastewater-based epidemiology (WBE) provides an early warning and trend analysis approach for determining the presence of COVID-19 in a community and complements clinical testing in assessing the population level, even as viral loads fluctuate. Here, we evaluate combinations of two wastewater concentration methods (i.e., ultrafiltration and composite supernatant-solid), four pre-RNA extraction modifications, and three nucleic acid extraction kits using two different wastewater sampling locations. These consisted of a quarantine facility containing clinically confirmed COVID-19-positive inhabitants and a university residence hall. Of the combinations examined, composite supernatant-solid with pre-RNA extraction consisting of water concentration and RNA/DNA shield performed the best in terms of speed and sensitivity. Further, of the three nucleic acid extraction kits examined, the most variability was associated with the Qiagen kit. Focusing on the quarantine facility, viral concentrations measured in wastewater were generally significantly related to positive clinical cases, with the relationship dependent on method, modification, kit, target, and normalization, although results were variable-dependent on individual time points (Kendall's Tau-b (τ) = 0.17 to 0.6) or cumulatively (Kendall's Tau-b (τ) = -0.048 to 1). These observations can support laboratories establishing protocols to perform wastewater surveillance and monitoring efforts for COVID-19.

...