Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(1): 101193, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38352270

RESUMEN

Friedreich's ataxia (FRDA) is an autosomal-recessive disorder primarily attributed to biallelic GAA repeat expansions that reduce expression of the mitochondrial protein frataxin (FXN). FRDA is characterized by progressive neurodegeneration, with many patients developing cardiomyopathy that progresses to heart failure and death. The potential to reverse or prevent progression of the cardiac phenotype of FRDA was investigated in a mouse model of FRDA, using an adeno-associated viral vector (AAV8) containing the coding sequence of the FXN gene. The Fxnflox/null::MCK-Cre conditional knockout mouse (FXN-MCK) has an FXN gene ablation that prevents FXN expression in cardiac and skeletal muscle, leading to cardiac insufficiency, weight loss, and morbidity. FXN-MCK mice received a single intravenous injection of an AAV8 vector containing human (hFXN) or mouse (mFXN) FXN genes under the control of a phosphoglycerate kinase promoter. Compared to vehicle-treated FXN-MCK control mice, AAV-treated FXN-MCK mice displayed increases in body weight, reversal of cardiac deficits, and increases in survival without apparent toxicity in the heart or liver for up to 12 weeks postdose. FXN protein expression in heart tissue was detected in a dose-dependent manner, exhibiting wide distribution throughout the heart similar to wild type, but more speckled. These results support an AAV8-based approach to treat FRDA-associated cardiomyopathy.

2.
Mol Cancer Res ; 17(2): 532-543, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30257990

RESUMEN

FGFR1 has been implicated in numerous cancer types including squamous cell lung cancer, a subset of non-small cell lung cancer with a dismal 5-year survival rate. Small-molecule inhibitors targeting FGFR1 are currently in clinical trials, with AZD4547 being one of the furthest along; however, the development of drug resistance is a major challenge for targeted therapies. A prevalent mechanism of drug resistance in kinases occurs through mutation of the gatekeeper residue, V561M in FGFR1; however, mechanisms underlying V561M resistance to AZD4547 are not fully understood. Here, the cellular consequences of the V561M gatekeeper mutation were characterized, and it was found that although AZD4547 maintains nanomolar affinity for V561M FGFR1, based on in vitro binding assays, cells expressing V561M demonstrate dramatic resistance to AZD4547 driven by increased STAT3 activation downstream of V561M FGFR1. The data reveal that the V561M mutation biases cells toward a more mesenchymal phenotype, including increased levels of proliferation, migration, invasion, and anchorage-independent growth, which was confirmed using CyTOF, a novel single-cell analysis tool. Using shRNA knockdown, loss of STAT3 restored sensitivity of cancer cells expressing V561M FGFR1 to AZD4547. Thus, the data demonstrate that combination therapies including FGFR and STAT3 may overcome V561M FGFR1-driven drug resistance in the clinic. IMPLICATIONS: The V561M FGFR1 gatekeeper mutation leads to devastating drug resistance through activation of STAT3 and the epithelial-mesenchymal transition; this study demonstrates that FGFR1 inhibitor sensitivity can be restored upon STAT3 knockdown.


Asunto(s)
Benzamidas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Piperazinas/farmacología , Pirazoles/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Factor de Transcripción STAT3/metabolismo , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo
3.
J Med Chem ; 58(10): 4220-9, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25901762

RESUMEN

Allosteric modulators of G protein-coupled receptors (GPCRs) have a number of potential advantages compared to agonists or antagonists that bind to the orthosteric site of the receptor. These include the potential for receptor selectivity, maintenance of the temporal and spatial fidelity of signaling in vivo, the ceiling effect of the allosteric cooperativity which may prevent overdose issues, and engendering bias by differentially modulating distinct signaling pathways. Here we describe the discovery, synthesis, and molecular pharmacology of δ-opioid receptor-selective positive allosteric modulators (δ PAMs). These δ PAMs increase the affinity and/or efficacy of the orthosteric agonists leu-enkephalin, SNC80 and TAN67, as measured by receptor binding, G protein activation, ß-arrestin recruitment, adenylyl cyclase inhibition, and extracellular signal-regulated kinases (ERK) activation. As such, these compounds are useful pharmacological tools to probe the molecular pharmacology of the δ receptor and to explore the therapeutic potential of δ PAMs in diseases such as chronic pain and depression.


Asunto(s)
Receptores Opioides delta/metabolismo , Relación Estructura-Actividad , Animales , Arrestinas/metabolismo , Benzamidas/farmacología , Unión Competitiva , Células CHO , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Técnicas de Química Sintética , Cricetulus , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/métodos , Encefalina Leucina/farmacología , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Estructura Molecular , Terapia Molecular Dirigida , Piperazinas/farmacología , Unión Proteica , Quinolinas/farmacología , beta-Arrestinas
4.
ACS Chem Biol ; 10(5): 1319-29, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25686244

RESUMEN

Human fibroblast growth factor receptors (FGFRs) 1-4 are a family of receptor tyrosine kinases that can serve as drivers of tumorigenesis. In particular, FGFR1 gene amplification has been implicated in squamous cell lung and breast cancers. Tyrosine kinase inhibitors (TKIs) targeting FGFR1, including AZD4547 and E3810 (Lucitanib), are currently in early phase clinical trials. Unfortunately, drug resistance limits the long-term success of TKIs, with mutations at the "gatekeeper" residue leading to tumor progression. Here we show the first structural and kinetic characterization of the FGFR1 gatekeeper mutation, V561M FGFR1. The V561M mutation confers a 38-fold increase in autophosphorylation achieved at least in part by a network of interacting residues forming a hydrophobic spine to stabilize the active conformation. Moreover, kinetic assays established that the V561M mutation confers significant resistance to E3810, while retaining affinity for AZD4547. Structural analyses of these TKIs with wild type (WT) and gatekeeper mutant forms of FGFR1 offer clues to developing inhibitors that maintain potency against gatekeeper mutations. We show that AZD4547 affinity is preserved by V561M FGFR1 due to a flexible linker that allows multiple inhibitor binding modes. This is the first example of a TKI binding in distinct conformations to WT and gatekeeper mutant forms of FGFR, highlighting adaptable regions in both the inhibitor and binding pocket crucial for drug design. Exploiting inhibitor flexibility to overcome drug resistance has been a successful strategy for combatting diseases such as AIDS and may be an important approach for designing inhibitors effective against kinase gatekeeper mutations.


Asunto(s)
Resistencia a Antineoplásicos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Humanos , Cinética , Modelos Moleculares , Fosforilación , Conformación Proteica , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...