Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942774

RESUMEN

Parvalbumin expressing interneurons (PV INs) are key players in the local inhibitory circuits and their developmental maturation coincides with the onset of adult-type network dynamics in the brain. Glutamatergic signaling regulates emergence of the unique PV IN phenotype, yet the receptor mechanisms involved are not fully understood. Here we show that GluK1 subunit containing kainate receptors (KARs) are necessary for development and maintenance of the neurochemical and functional properties of PV INs in the lateral and basal amygdala (BLA). Ablation of GluK1 expression specifically from PV INs resulted in low parvalbumin expression and loss of characteristic high firing rate throughout development. In addition, we observed reduced spontaneous excitatory synaptic activity at adult GluK1 lacking PV INs. Intriguingly, inactivation of GluK1 expression in adult PV INs was sufficient to abolish their high firing rate and to reduce PV expression levels, suggesting a role for GluK1 in dynamic regulation of PV IN maturation state. The PV IN dysfunction in the absence of GluK1 perturbed the balance between evoked excitatory vs. inhibitory synaptic inputs and long-term potentiation (LTP) in LA principal neurons, and resulted in aberrant development of the resting-state functional connectivity between mPFC and BLA. Behaviorally, the absence of GluK1 from PV INs associated with hyperactivity and increased fear of novelty. These results indicate a critical role for GluK1 KARs in regulation of PV IN function across development and suggest GluK1 as a potential therapeutic target for pathologies involving PV IN malfunction.

2.
eNeuro ; 10(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553240

RESUMEN

Expanding knowledge about the cellular composition of subcortical brain regions demonstrates large heterogeneity and differences from the cortical architecture. Previously we described three subtypes of somatostatin-expressing (Sst) neurons in the mouse ventral tegmental area (VTA) and showed their local inhibitory action on the neighboring dopaminergic neurons (Nagaeva et al., 2020). Here, we report that Sst+ neurons especially from the anterolateral part of the mouse VTA also project far outside the VTA and innervate forebrain regions that are mainly involved in the regulation of emotional behavior, including the ventral pallidum, lateral hypothalamus, the medial part of the central amygdala, anterolateral division of the bed nucleus of stria terminalis, and paraventricular thalamic nucleus. Deletion of these VTASst neurons in mice affected several behaviors, such as home cage activity, sensitization of locomotor activity to morphine, fear conditioning responses, and reactions to the inescapable stress of forced swimming, often in a sex-dependent manner. Together, these data demonstrate that VTASst neurons have selective projection targets distinct from the main targets of VTA dopamine neurons. VTASst neurons are involved in the regulation of behaviors primarily associated with the stress response, making them a relevant addition to the efferent VTA pathways and stress-related neuronal network.


Asunto(s)
Neuronas Dopaminérgicas , Área Tegmental Ventral , Ratones , Animales , Área Tegmental Ventral/metabolismo , Vías Eferentes/metabolismo , Neuronas Dopaminérgicas/metabolismo , Área Hipotalámica Lateral , Somatostatina/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499137

RESUMEN

Alzheimer's disease (AD) is the most common cause of age-related dementia. Neuronal calcium homeostasis impairment may contribute to AD. Here we demonstrated that voltage-gated calcium (VGC) entry and store-operated calcium (SOC) entry regulated by calcium sensors of intracellular calcium stores STIM proteins are affected in hippocampal neurons of the 5xFAD transgenic mouse model. We observed excessive SOC entry in 5xFAD mouse neurons, mediated by STIM1 and STIM2 proteins with increased STIM1 contribution. There were no significant changes in cytoplasmic calcium level, endoplasmic reticulum (ER) bulk calcium levels, or expression levels of STIM1 or STIM2 proteins. The potent inhibitor BTP-2 and the FDA-approved drug leflunomide reduced SOC entry in 5xFAD neurons. In turn, excessive voltage-gated calcium entry was sensitive to the inhibitor of L-type calcium channels nifedipine but not to the T-type channels inhibitor ML218. Interestingly, the depolarization-induced calcium entry mediated by VGC channels in 5xFAD neurons was dependent on STIM2 but not STIM1 protein in cells with replete Ca2+ stores. The result gives new evidence on the VGC channel modulation by STIM2. Overall, the data demonstrate the changes in calcium signaling of hippocampal neurons of the AD mouse model, which precede amyloid plaque accumulation or other signs of pathology manifestation.


Asunto(s)
Enfermedad de Alzheimer , Calcio , Animales , Ratones , Calcio/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/metabolismo , Señalización del Calcio/fisiología , Canales de Calcio Tipo L/metabolismo , Modelos Animales de Enfermedad
4.
Transl Psychiatry ; 11(1): 538, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663781

RESUMEN

Early life stress (ELS) is a well-characterized risk factor for mood and anxiety disorders. GABAergic microcircuits in the amygdala are critically implicated in anxiety; however, whether their function is altered after ELS is not known. Here we identify a novel mechanism by which kainate receptors (KARs) modulate feedforward inhibition in the lateral amygdala (LA) and show that this mechanism is downregulated after ELS induced by maternal separation (MS). Specifically, we show that in control rats but not after MS, endogenous activity of GluK1 subunit containing KARs disinhibit LA principal neurons during activation of cortical afferents. GluK1 antagonism attenuated excitability of parvalbumin (PV)-expressing interneurons, resulting in loss of PV-dependent inhibitory control and an increase in firing of somatostatin-expressing interneurons. Inactivation of Grik1 expression locally in the adult amygdala reduced ongoing GABAergic transmission and was sufficient to produce a mild anxiety-like behavioral phenotype. Interestingly, MS and GluK1-dependent phenotypes showed similar gender specificity, being detectable in male but not female rodents. Our data identify a novel KAR-dependent mechanism for cell-type and projection-specific functional modulation of the LA GABAergic microcircuit and suggest that the loss of GluK1 KAR function contributes to anxiogenesis after ELS.


Asunto(s)
Ansiedad , Receptores de Ácido Kaínico , Estrés Psicológico , Animales , Masculino , Ratas , Amígdala del Cerebelo/metabolismo , Regulación hacia Abajo , Interneuronas/metabolismo , Privación Materna , Receptores de Ácido Kaínico/metabolismo
5.
Mol Psychiatry ; 26(12): 7247-7256, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34321594

RESUMEN

Elevated states of brain plasticity typical for critical periods of early postnatal life can be reinstated in the adult brain through interventions, such as antidepressant treatment and environmental enrichment, and induced plasticity may be critical for the antidepressant action. Parvalbumin-positive (PV) interneurons regulate the closure of developmental critical periods and can alternate between high and low plasticity states in response to experience in adulthood. We now show that PV plasticity states and cortical networks are regulated through the activation of TrkB neurotrophin receptors. Visual cortical plasticity induced by fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI) antidepressant, was lost in mice with reduced expression of TrkB in PV interneurons. Conversely, optogenetic gain-of-function studies revealed that activation of an optically activatable TrkB (optoTrkB) specifically in PV interneurons switches adult cortical networks into a state of elevated plasticity within minutes by decreasing the intrinsic excitability of PV interneurons, recapitulating the effects of fluoxetine. TrkB activation shifted cortical networks towards a low PV configuration, promoting oscillatory synchrony, increased excitatory-inhibitory balance, and ocular dominance plasticity. OptoTrkB activation promotes the phosphorylation of Kv3.1 channels and reduces the expression of Kv3.2 mRNA providing a mechanism for the lower excitability. In addition, decreased expression and puncta of Synaptotagmin2 (Syt2), a presynaptic marker of PV interneurons involved in Ca2+-dependent neurotransmitter release, suggests lower inputs onto pyramidal neurons suppressing feed-forward inhibition. Together, the results provide mechanistic insights into how TrkB activation in PV interneurons orchestrates the activity of cortical networks and mediating antidepressant responses in the adult brain.


Asunto(s)
Interneuronas , Plasticidad Neuronal , Corteza Visual , Animales , Interneuronas/metabolismo , Ratones , Plasticidad Neuronal/fisiología , Parvalbúminas/metabolismo , Transmisión Sináptica , Sinaptotagmina II/metabolismo , Corteza Visual/metabolismo
6.
Neuropharmacology ; 195: 108585, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33910033

RESUMEN

Kainate receptors (KARs) are highly expressed in the immature brain and have unique developmentally regulated functions that may be important in linking neuronal activity to morphogenesis during activity-dependent fine-tuning of the synaptic connectivity. Altered expression of KARs in the developing neural network leads to changes in glutamatergic connectivity and network excitability, which may lead to long-lasting changes in behaviorally relevant circuitries in the brain. Here, we summarize the current knowledge on physiological and morphogenic functions described for different types of KARs at immature neural circuitries, focusing on their roles in modulating synaptic transmission and plasticity as well as circuit maturation in the rodent hippocampus and amygdala. Finally, we discuss the emerging evidence suggesting that malfunction of KARs in the immature brain may contribute to the pathophysiology underlying developmentally originating neurological disorders.


Asunto(s)
Hipocampo/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Receptores de Ácido Kaínico/metabolismo , Animales , Humanos , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo
7.
Elife ; 92020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32202495

RESUMEN

Perturbed information processing in the amygdala has been implicated in developmentally originating neuropsychiatric disorders. However, little is known on the mechanisms that guide formation and refinement of intrinsic connections between amygdaloid nuclei. We demonstrate that in rodents the glutamatergic connection from basolateral to central amygdala (BLA-CeA) develops rapidly during the first 10 postnatal days, before external inputs underlying amygdala-dependent behaviors emerge. During this restricted period of synaptic development, kainate-type of ionotropic glutamate receptors (KARs) are highly expressed in the BLA and tonically activated to regulate glutamate release via a G-protein-dependent mechanism. Genetic manipulation of this endogenous KAR activity locally in the newborn LA perturbed development of glutamatergic input to CeA, identifying KARs as a physiological mechanism regulating formation of the glutamatergic circuitry in the amygdala.


Asunto(s)
Amígdala del Cerebelo/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/fisiología , Receptores de Ácido Kaínico/metabolismo , Sinapsis/fisiología , Animales , Electrofisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Ácido Kaínico/genética
8.
Mol Neurobiol ; 55(6): 4667-4680, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28707074

RESUMEN

Presenilins regulate calcium homeostasis in the endoplasmic reticulum, and dysregulation of intracellular calcium has been implicated in the pathogenesis of Alzheimer disease. Elevated presenilin-1 (PS1) holoprotein levels have been detected in postmortem brains of patients carrying familial Alzheimer disease (FAD) PS1 mutations. This study examines the effect of the FAD presenilin mutant that lacks the ninth exon (PS1 ∆E9) and does not undergo endoproteolysis on store-operated calcium (SOC) entry. Significant enhancement of SOC channel activation was detected by electrophysiological measurements in hippocampal neurons with PS1 ∆E9 mutant expression. Here, we show that (i) the hyperactivation of SOC channels is mediated by the STIM1 sensor and can be attenuated by STIM1 knockdown or 2-aminoethoxydiphenyl borate application, (ii) the STIM2 is not involved in pathological changes of SOC entry, (iii) the pathological SOC entry demonstrates properties of both TRPC and Orai subunit composition, and (iiii) transgenic Drosophila flies with PS1 ∆E9 expression in the cholinergic neuron system show short-term memory loss, which can be abolished by 2-aminoethoxydiphenyl borate feeding.


Asunto(s)
Canales de Calcio/metabolismo , Hipocampo/citología , Activación del Canal Iónico , Mutación/genética , Neuronas/metabolismo , Presenilina-1/genética , Molécula de Interacción Estromal 1/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Membrana Celular/metabolismo , Neuronas Colinérgicas/metabolismo , Drosophila melanogaster/genética , Técnicas de Silenciamiento del Gen , Trastornos de la Memoria/patología , Ratones , Proteínas Mutantes/metabolismo , Proteína ORAI1/metabolismo , Canales Catiónicos TRPC/metabolismo
9.
Sci Rep ; 7(1): 7811, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798343

RESUMEN

A brief burst-suppressing isoflurane anesthesia has been shown to rapidly alleviate symptoms of depression in a subset of patients, but the neurobiological basis of these observations remains obscure. We show that a single isoflurane anesthesia produces antidepressant-like behavioural effects in the learned helplessness paradigm and regulates molecular events implicated in the mechanism of action of rapid-acting antidepressant ketamine: activation of brain-derived neurotrophic factor (BDNF) receptor TrkB, facilitation of mammalian target of rapamycin (mTOR) signaling pathway and inhibition of glycogen synthase kinase 3ß (GSK3ß). Moreover, isoflurane affected neuronal plasticity by facilitating long-term potentiation in the hippocampus. We also found that isoflurane increased activity of the parvalbumin interneurons, and facilitated GABAergic transmission in wild type mice but not in transgenic mice with reduced TrkB expression in parvalbumin interneurons. Our findings strengthen the role of TrkB signaling in the antidepressant responses and encourage further evaluation of isoflurane as a rapid-acting antidepressant devoid of the psychotomimetic effects and abuse potential of ketamine.


Asunto(s)
Antidepresivos/administración & dosificación , Hipocampo/fisiología , Isoflurano/administración & dosificación , Receptor trkB/metabolismo , Animales , Antidepresivos/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Desamparo Adquirido , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Isoflurano/farmacología , Ketamina/farmacología , Potenciación a Largo Plazo , Masculino , Ratones , Parvalbúminas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
10.
Mol Neurodegener ; 11: 27, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27080129

RESUMEN

BACKGROUND: Huntington's disease (HD) is an incurable hereditary neurodegenerative disorder, which manifests itself as a loss of GABAergic medium spiny (GABA MS) neurons in the striatum and caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. There is no cure for HD, existing pharmaceutical can only relieve its symptoms. RESULTS: Here, induced pluripotent stem cells were established from patients with low CAG repeat expansion in the huntingtin gene, and were then efficiently differentiated into GABA MS-like neurons (GMSLNs) under defined culture conditions. The generated HD GMSLNs recapitulated disease pathology in vitro, as evidenced by mutant huntingtin protein aggregation, increased number of lysosomes/autophagosomes, nuclear indentations, and enhanced neuronal death during cell aging. Moreover, store-operated channel (SOC) currents were detected in the differentiated neurons, and enhanced calcium entry was reproducibly demonstrated in all HD GMSLNs genotypes. Additionally, the quinazoline derivative, EVP4593, reduced the number of lysosomes/autophagosomes and SOC currents in HD GMSLNs and exerted neuroprotective effects during cell aging. CONCLUSIONS: Our data is the first to demonstrate the direct link of nuclear morphology and SOC calcium deregulation to mutant huntingtin protein expression in iPSCs-derived neurons with disease-mimetic hallmarks, providing a valuable tool for identification of candidate anti-HD drugs. Our experiments demonstrated that EVP4593 may be a promising anti-HD drug.


Asunto(s)
Enfermedad de Huntington/patología , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Calcio/metabolismo , Diferenciación Celular , Línea Celular , Cuerpo Estriado/metabolismo , Humanos , Enfermedad de Huntington/metabolismo , Lisosomas/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo
11.
J Neurochem ; 136(5): 1085-95, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26678016

RESUMEN

Presenilins have been reported to regulate calcium homeostasis in the endoplasmic reticulum, and dysregulation of intracellular calcium has been implicated in the pathogenesis of Alzheimer's disease (AD). Reduced endoproteolysis levels of presenilin-1 (PS1) have been detected in postmortem brains of patients carrying familial Alzheimer's disease PS1 mutations. This study deals with the effect of attenuated endoproteolysis of PS1 on store-operated calcium (SOC) entry in neuronal cells and mouse fibroblasts with double knockouts of PS1 and PS2. Significant enhancement of SOC channel activation has been detected by electrophysiological measurements in cells with reduced PS1 endoproteolysis. The increase in SOC entry was not accompanied by any changes in protein levels of channels subunits or stromal interaction molecule. These data are important for understanding the role of PS1 in AD, apart from its involvement in γ-secretase cleavage of amyloid precursor protein into Aß. Taking into account that most of familial AD-connected mutations in PS1 are loss-of-function, the observed effects may well be general for familial AD. Reduced endoproteolysis levels of presenilin-1 (PS1) have been detected in postmortem brains of patients carrying familial Alzheimer's disease PS1 mutations. Significant enhancement of SOC channel activation has been detected by electrophysiological measurements in cells with reduced PS1 endoproteolysis. The data obtained shed light on Alzheimer's disease pathogenesis and implicates to the future drugs development.


Asunto(s)
Enfermedad de Alzheimer/genética , Calcio/metabolismo , Mutación/genética , Neuronas/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Presenilina-2/genética , Presenilina-2/metabolismo
12.
Cell Calcium ; 48(4): 209-14, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20926133

RESUMEN

Homers are adapter proteins that play a significant role in the organization of calcium signaling protein complexes. Previous functional studies linked Homer proteins to calcium influx in nonexcitable cells. These studies utilized calcium imaging or whole-cell current recordings. Because of limited resolution of these methods, an identity of Homer-modulated ion channels remained unclear. There are several types of plasma membrane calcium influx channels in A431 cells. In the present study, we demonstrated that Homer dissociation resulted in specific activation of I(min) channels but not of I(max) channels in inside-out patches taken from A431 cells. In contrast, inositol 1,4,5-trisphosphate activated both I(min) and I(max) channels in inside-out patches. Short (1a) and long (1c) forms of Homer had different effects on I(min) channel activity. Homer 1a but not Homer 1c activated I(min) in the patches. This study indicates that I(min) channels are specifically regulated by Homer proteins in A431 cells.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Secuencia de Aminoácidos , Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Proteínas Portadoras/genética , Línea Celular Tumoral , Fenómenos Electrofisiológicos , Proteínas de Andamiaje Homer , Humanos , Inositol 1,4,5-Trifosfato/farmacología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Técnicas de Placa-Clamp , Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...