Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Antimicrob Agents Chemother ; : e0161923, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712935

We used whole-genome sequencing to analyze a collection of 35 fluconazole-resistant and 7 susceptible Candida parapsilosis isolates together with coverage analysis and GWAS techniques to identify new mechanisms of fluconazole resistance. Phylogenetic analysis shows that although the collection is diverse, two persistent clinical lineages were identified. We identified copy number variation (CNV) of two genes, ERG11 and CDR1B, in resistant isolates. Two strains have a CNV at the ERG11 locus; the entire ORF is amplified in one, and only the promoter region is amplified in the other. We show that the annotated telomeric gene CDR1B is actually an artifactual in silico fusion of two highly similar neighboring CDR genes due to an assembly error in the C. parapsilosis CDC317 reference genome. We report highly variable copy numbers of the CDR1B region across the collection. Several strains have increased the expansion of the two genes into a tandem array of new chimeric genes. Other strains have experienced a deletion between the two genes creating a single gene with a reciprocal chimerism. We find translocations, duplications, and gene conversion across the CDR gene family in the C. parapsilosis species complex, showing that it is a highly dynamic family.

2.
Nat Commun ; 15(1): 4261, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769341

Triazoles, the most widely used class of antifungal drugs, inhibit the biosynthesis of ergosterol, a crucial component of the fungal plasma membrane. Inhibition of a separate ergosterol biosynthetic step, catalyzed by the sterol C-24 methyltransferase Erg6, reduces the virulence of pathogenic yeasts, but its effects on filamentous fungal pathogens like Aspergillus fumigatus remain unexplored. Here, we show that the lipid droplet-associated enzyme Erg6 is essential for the viability of A. fumigatus and other Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Downregulation of erg6 causes loss of sterol-rich membrane domains required for apical extension of hyphae, as well as altered sterol profiles consistent with the Erg6 enzyme functioning upstream of the triazole drug target, Cyp51A/Cyp51B. Unexpectedly, erg6-repressed strains display wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, we show that erg6 repression results in significant reduction in mortality in a murine model of invasive aspergillosis. Taken together with recent studies, our work supports Erg6 as a potentially pan-fungal drug target.


Antifungal Agents , Aspergillosis , Aspergillus , Ergosterol , Fungal Proteins , Methyltransferases , Triazoles , Animals , Methyltransferases/metabolism , Methyltransferases/genetics , Antifungal Agents/pharmacology , Aspergillus/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Mice , Aspergillosis/microbiology , Aspergillosis/drug therapy , Ergosterol/metabolism , Ergosterol/biosynthesis , Triazoles/pharmacology , Gene Expression Regulation, Fungal , Aspergillus fumigatus/genetics , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/metabolism , Hyphae/drug effects , Hyphae/growth & development , Hyphae/genetics , Hyphae/metabolism , Female , Microbial Sensitivity Tests , Virulence/genetics
3.
mBio ; 15(5): e0063324, 2024 May 08.
Article En | MEDLINE | ID: mdl-38587428

Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE: Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.


Antifungal Agents , CDPdiacylglycerol-Serine O-Phosphatidyltransferase , Candida albicans , Enzyme Inhibitors , Candida albicans/drug effects , Candida albicans/enzymology , Candida albicans/genetics , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/genetics , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/metabolism , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Microbial Sensitivity Tests , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Phosphatidylserines/metabolism , Furans , Thiophenes
4.
Nat Commun ; 15(1): 3642, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684680

Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance.


Antifungal Agents , Aspergillus fumigatus , Ergosterol , Fungal Proteins , Hydroxymethylglutaryl CoA Reductases , Triazoles , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/metabolism , Aspergillus fumigatus/genetics , Antifungal Agents/pharmacology , Triazoles/pharmacology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ergosterol/metabolism , Ergosterol/biosynthesis , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Aspergillosis/drug therapy , Aspergillosis/microbiology , Drug Resistance, Fungal/genetics , Drug Resistance, Fungal/drug effects , Gene Expression Regulation, Fungal/drug effects , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Microbial Sensitivity Tests , Sterol 14-Demethylase/metabolism , Sterol 14-Demethylase/genetics , Humans , Mutation
5.
Clin Microbiol Infect ; 29(12): 1602.e1-1602.e7, 2023 Dec.
Article En | MEDLINE | ID: mdl-37666448

OBJECTIVES: The aim of this study was to determine how mutations in CpERG11 and CpTAC1 contribute to fluconazole resistance in a collection of clinical isolates. METHODS: Sequences of CpERG11 and CpTAC1 were determined for 35 resistant Candida parapsilosis clinical isolates. A plasmid-based CRISPR-Cas9 system was used to introduce mutations leading to amino acid substitution in CpTac1 and CpErg11. Triazole susceptibility was determined by broth microdilution and E-test. Differential expression of genes mediated by CpTAC1 mutation was determined by RNA sequencing, and relative expression of individual transporter genes was assessed with RT-qPCR. RESULTS: Six isolates carried a mutation in CpTAC1 in combination with the CpERG11 mutation, leading to the CpErg11Y132F substitution. When introduced into susceptible isolates, this CpERG11 mutation led to a 4- to 8-fold increase in fluconazole minimum inhibitory concentrations (MIC; 0.125 µg/mL vs. 0.5 µg/mL, 0.125 µg/mL vs. 0.5 µg/mL, and 0.5 µg/mL vs. 4 µg/mL). When introduced into a susceptible isolate, the CpTAC1 mutation leading to the G650E substitution resulted in an 8-fold increase in fluconazole MIC (0.25 µg/mL vs. 2 µg/mL), whereas correction of this mutation in resistant isolates led to a 16-fold reduction in MIC (32 µg/mL vs. 2 µg/mL). CpCDR1, CpCDR1B, and CpCDR1C were overexpressed in the presence CpTac1G650E. Disruption of these genes in combination resulted in a 4-fold reduction in fluconazole MIC (32 µg/mL vs. 8 µg/mL). DISCUSSION: These results define the specific contribution made by the Y132F substitution in CpERG11 and demonstrate a role for activating mutations in CpTAC1 in triazole resistance in C. parapsilosis.


Antifungal Agents , Fluconazole , Humans , Antifungal Agents/pharmacology , Fluconazole/pharmacology , Candida parapsilosis/genetics , Triazoles/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mutation , Drug Resistance, Fungal/genetics , Microbial Sensitivity Tests
6.
bioRxiv ; 2023 Aug 09.
Article En | MEDLINE | ID: mdl-37609350

Ergosterol is a critical component of fungal plasma membranes. Although many currently available antifungal compounds target the ergosterol biosynthesis pathway for antifungal effect, current knowledge regarding ergosterol synthesis remains incomplete for filamentous fungal pathogens like Aspergillus fumigatus. Here, we show for the first time that the lipid droplet-associated sterol C-24 methyltransferase, Erg6, is essential for A. fumigatus viability. We further show that this essentiality extends to additional Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Neither the overexpression of a putative erg6 paralog, smt1, nor the exogenous addition of ergosterol could rescue erg6 deficiency. Importantly, Erg6 downregulation results in a dramatic decrease in ergosterol and accumulation in lanosterol and is further characterized by diminished sterol-rich plasma membrane domains (SRDs) at hyphal tips. Unexpectedly, erg6 repressed strains demonstrate wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, repressing erg6 expression reduced fungal burden accumulation in a murine model of invasive aspergillosis. Taken together, our studies suggest that Erg6, which shows little homology to mammalian proteins, is potentially an attractive antifungal drug target for therapy of Aspergillus infections.

7.
Microbiol Spectr ; 11(3): e0518822, 2023 06 15.
Article En | MEDLINE | ID: mdl-37140376

Aspergillus fumigatus is a ubiquitous environmental mold that can cause severe disease in immunocompromised patients and chronic disease in individuals with underlying lung conditions. Triazoles are the most widely used class of antifungal drugs to treat A. fumigatus infections, but their use in the clinic is threatened by the emergence of triazole-resistant isolates worldwide, reinforcing the need for a better understanding of resistance mechanisms. The predominant mechanisms of A. fumigatus triazole resistance involve mutations affecting the promoter region or coding sequence of the target enzyme of the triazoles, Cyp51A. However, triazole-resistant isolates without cyp51A-associated mutations are frequently identified. In this study, we investigate a pan-triazole-resistant clinical isolate, DI15-105, that simultaneously carries the mutations hapEP88L and hmg1F262del, with no mutations in cyp51A. Using a Cas9-mediated gene-editing system, hapEP88L and hmg1F262del mutations were reverted in DI15-105. Here, we show that the combination of these mutations accounts for pan-triazole resistance in DI15-105. To our knowledge, DI15-105 is the first clinical isolate reported to simultaneously carry mutations in hapE and hmg1 and only the second with the hapEP88L mutation. IMPORTANCE Triazole resistance is an important cause of treatment failure and high mortality rates for A. fumigatus human infections. Although Cyp51A-associated mutations are frequently identified as the cause of A. fumigatus triazole resistance, they do not explain the resistance phenotypes for several isolates. In this study, we demonstrate that hapE and hmg1 mutations additively contribute to pan-triazole resistance in an A. fumigatus clinical isolate lacking cyp51-associated mutations. Our results exemplify the importance of and the need for a better understanding of cyp51A-independent triazole resistance mechanisms.


Aspergillosis , Aspergillus fumigatus , Humans , Aspergillus fumigatus/genetics , Triazoles/pharmacology , Fungal Proteins/genetics , Drug Resistance, Fungal/genetics , Aspergillosis/drug therapy , Aspergillosis/microbiology , Antifungal Agents/pharmacology , Microbial Sensitivity Tests
8.
bioRxiv ; 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38168157

We used whole-genome sequencing to analyse a collection of 35 fluconazole resistant and 7 susceptible Candida parapsilosis isolates together with coverage analysis and GWAS techniques to identify new mechanisms of fluconazole resistance. Phylogenetic analysis shows that although the collection is diverse, two probable outbreak groups were identified. We identified copy number variation of two genes, ERG11 and CDR1B, in resistant isolates. Two strains have a CNV at the ERG11 locus; the entire ORF is amplified in one, and only the promoter region is amplified in the other. We show the annotated telomeric gene CDR1B is actually an artefactual in silico fusion of two highly similar neighbouring CDR genes due to an assembly error in the C. parapsilosis CDC317 reference genome. We report highly variable copy numbers of the CDR1B region across the collection. Several strains have increased expansion of the two genes into a tandem array of new chimeric genes. Other strains have experienced a deletion between the two genes creating a single gene with a reciprocal chimerism. We find translocations, duplications, and gene conversion across the CDR gene family in the C. parapsilosis species complex, showing that it is a highly dynamic family.

9.
Curr Opin Microbiol ; 70: 102208, 2022 12.
Article En | MEDLINE | ID: mdl-36242897

Fungal infections are responsible for significant morbidity and mortality. Resistance to the limited number of agents in the antifungal armamentarium among pathogenic fungi represents a growing public health threat. Particularly concerning is the emerging fungal pathogen Candida auris that frequently exhibits resistance to the triazole class of antifungals and amphotericin B, and for which isolates resistant to all of the major antifungal classes have been reported. In this brief review, we provide an overview of what is currently known about the molecular and genetic basis for antifungal resistance in this fungal pathogen.


Antifungal Agents , Candida , Antifungal Agents/pharmacology , Candida auris , Drug Resistance, Fungal/genetics , Amphotericin B/pharmacology , Microbial Sensitivity Tests
10.
Antimicrob Agents Chemother ; 66(7): e0028922, 2022 07 19.
Article En | MEDLINE | ID: mdl-35699442

Candida parapsilosis is a common cause of invasive candidiasis worldwide and is the most commonly is7olated Candida species among pediatric and neonatal populations. Previous work has demonstrated that nonsynonymous mutations in the gene encoding the putative transcription factor CpMrr1 can influence fluconazole susceptibility. However, the direct contribution of these mutations and how they influence fluconazole resistance in clinical isolates are poorly understood. We identified 7 nonsynonymous CpMRR1 mutations in 12 isolates from within a collection of 35 fluconazole-resistant clinical isolates. The mutations leading to the A854V, R479K, and I283R substitutions were further examined and found to be activating mutations leading to increased fluconazole resistance. In addition to CpMDR1, we identified two other genes, one encoding a major facilitator superfamily (MFS) transporter (CpMDR1B, CPAR2_603010) and one encoding an ATP-binding cassette (ABC) transporter (CpCDR1B, CPAR2_304370), as being upregulated in isolates carrying CpMRR1-activating mutations. Overexpression of CpMDR1 in a susceptible strain and disruption in resistant clinical isolates that overexpress CpMDR1 had little to no effect on fluconazole susceptibility. Conversely, overexpression of either CpMDR1B or CpCDR1B increased resistance, and disruption in clinical isolates overexpressing these genes decreased fluconazole resistance. Our findings suggest that activating mutations in CpMRR1 represent important genetic determinants of fluconazole resistance in clinical isolates of C. parapsilosis, and unlike what is observed in Candida albicans, this is primarily driven by upregulation of both MFS (CpMdr1B) and ABC (CpCdr1B) transporters.


Candida parapsilosis , Drug Resistance, Fungal , Fluconazole , ATP-Binding Cassette Transporters/genetics , Antifungal Agents/pharmacology , Candida albicans/genetics , Candida albicans/metabolism , Candida parapsilosis/drug effects , Candida parapsilosis/metabolism , Drug Resistance, Fungal/genetics , Fluconazole/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Humans , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests
11.
Microbiol Spectr ; 10(3): e0263021, 2022 06 29.
Article En | MEDLINE | ID: mdl-35612314

As increasing evidence emerges that interstrain genetic diversity among Candida albicans clinical isolates underpins phenotypic variation compared to the reference isolate SC5314, new genetic tools are required to interrogate gene function across strain backgrounds. Here, the SAT1-flipper plasmid was reengineered to contain a C. albicans codon optimized hygromycin B resistance gene (CaHygB). Cassettes were PCR-amplified from both SAT1-flipper and CaHygB-flipper plasmids using primers with homologous sequences flanking target genes of interest to serve as repair templates. Ribonucleoprotein (RNP) complexes containing proprietary CRISPR RNAs (crRNAs), universal transactivating CRISPR RNA (tracrRNA), and Cas9 protein were assembled in vitro and transformed, along with both repair templates, by electroporation into C. albicans. Homozygous deletion of the ADE2 gene results in red-pigmented colonies and this gene was used to validate our approach. Both in SC5314 and a variety of clinical isolates (529L, JS15, SJCA1, TW1), homozygous gene targeting was nearly 100% when plating on media containing nourseothricin and hygromycin B with transformation efficiencies exceeding 104 homozygous deletion mutants per µg of DNA. A gene reversion system was also employed with plasmids pDUP3 and pDIS3 engineered to contain the ADH1 terminator and an overlap extension PCR-mediated approach combined with CRISPR-Cas9 targeting at the NEUT5 neutral locus. A variety of single or compound mutants (Δ/Δals3, Δ/Δcph1 Δ/Δefg1, Δ/Δece1) and their revertant strains were constructed and phenotypically validated by a variety of assays, including biofilm formation, hyphal growth, and macrophage IL-1ß response. Thus, we have established a cloning-free, modular system for highly efficient homozygous gene deletion and reversion in diverse isolates. IMPORTANCE Recently, phenotypic heterogeneity in Candida albicans isolates has been recognized as an underappreciated factor contributing to gene diversification and broadly impacts strain-to-strain antifungal resistance, fitness, and pathogenicity. We have designed a cloning-free genetic system for rapid gene deletion and reversion in C. albicans clinical isolates that interlaces established recyclable genetic systems with CRISPR-Cas9 technology. The SAT1-flipper was reengineered to contain CaHygB encoding resistance to hygromycin B. Using a modular PCR-mediated approach coupled with in vitro ribonucleoprotein assembly with commercial reagents, both SAT1- and CaHygB-flipper cassettes were simultaneously integrated at loci with high efficiency (104 transformants per µg DNA) and upward of 99% homozygous gene targeting across a collection of diverse isolates of various anatomical origin. Revertant strains were constructed by overlap extension PCR with CRISPR-Cas9 targeted integration at the NEUT5 locus. Thus, this facile system will aid in unraveling the genetic factors contributing to the complexity of intraspecies diversity.


CRISPR-Cas Systems , Candida albicans , Candida albicans/genetics , Homozygote , Hygromycin B , Ribonucleoproteins/genetics , Sequence Deletion
12.
Clin Microbiol Infect ; 28(6): 838-843, 2022 Jun.
Article En | MEDLINE | ID: mdl-34915074

OBJECTIVE: Candida auris has emerged as a health-care-associated and multidrug-resistant fungal pathogen of great clinical concern. As many as 50% of C. auris clinical isolates are reported to be resistant to amphotericin B, but no mechanisms contributing to this resistance have been identified. Here we describe a clinical case in which high-level amphotericin B resistance was acquired in vivo during therapy and undertake molecular and genetic studies to identify and characterize the genetic determinant of resistance. METHODS: Whole-genome sequencing was performed on four C. auris isolates obtained from a single patient case. Cas9-mediated genetic manipulations were then used to generate mutant strains harbouring mutations of interest, and these strains were subsequently subjected to amphotericin B susceptibility testing and comprehensive sterol profiling. RESULTS: A novel mutation in the C. auris sterol-methyltransferase gene ERG6 was found to be associated with amphotericin B resistance, and this mutation alone conferred a >32-fold increase in amphotericin B resistance. Comprehensive sterol profiling revealed an abrogation of ergosterol biosynthesis and a corresponding accumulation of cholesta-type sterols in isolates and strains harbouring the clinically derived ERG6 mutation. CONCLUSIONS: Together these findings definitively demonstrate mutations in C. auris ERG6 as the first identified mechanism of clinical amphotericin B resistance in C. auris and represent a significant step forward in the understanding of antifungal resistance in this emerging public health threat.


Amphotericin B , Candida auris , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Humans , Microbial Sensitivity Tests , Sterols
13.
Microbiol Spectr ; 9(3): e0158521, 2021 12 22.
Article En | MEDLINE | ID: mdl-34878305

Resistance to fluconazole is one of clinical characteristics most frequently challenging the treatment of invasive Candida auris infections, and is observed among >90% of all characterized clinical isolates. In this work, the native C. auris ERG11 allele in a previously characterized fluconazole-susceptible clinical isolate was replaced with the ERG11 alleles from three highly fluconazole-resistant clinical isolates (MIC ≥256 mg/L), encoding the amino acid substitutions VF125AL, Y132F, and K143R, using Cas9-ribonucleoprotein (RNP) mediated transformation system. Reciprocally, the ERG11WT allele from the same fluconazole-susceptible clinical isolate, lacking any resistance-associated mutation, was introduced into a previously characterized fluconazole-resistant clinical isolate, replacing the native ERG11K143R allele, using the same methods. The resulting collection of strains was subjected to comprehensive triazole susceptibility testing, and the direct impact each of these clinically-derived ERG11 mutations on triazole MIC was determined. Introduction of each of the three mutant ERG11 alleles was observed to increase fluconazole and voriconazole MIC by 8- to 16-fold. The MIC for the other clinically available triazoles were not significantly impacted by any ERG11 mutation. In the fluconazole-resistant clinical isolate background, correction of the K143R encoding mutation led to a similar 16-fold decrease in fluconazole MIC, and 8-fold decrease in voriconazole MIC, while the MIC of other triazoles were minimally changed. Taken together, these findings demonstrate that mutations in C. auris ERG11 significantly contribute to fluconazole and voriconazole resistance, but alone cannot explain the substantially elevated MIC observed among clinical isolates of C. auris. IMPORTANCE Candida auris is an emerging multidrug-resistant and health care-associated pathogen of urgent clinical concern. The triazoles are the most widely prescribed antifungal agents worldwide and are commonly utilized for the treatment of invasive Candida infections. Greater than 90% of all C. auris clinical isolates are observed to be resistant to fluconazole, and nearly all fluconazole-resistant isolates of C. auris are found to have one of three mutations (encoding VF125AL, Y132F, or K143R) in the gene encoding the target of the triazoles, ERG11. However, the direct contribution of these mutations in ERG11 to fluconazole resistance and the impact these mutations may have the susceptibility of the other triazoles remains unknown. The present study seeks to address this knowledge gap and potentially inform the future application the triazole antifungals for the treatment of infections caused by C. auris.


Antifungal Agents/pharmacology , Candida auris/drug effects , Candida auris/genetics , Drug Resistance, Fungal/drug effects , Drug Resistance, Fungal/genetics , Mutation , Triazoles/pharmacology , Amino Acid Substitution , Candidiasis , Cytochrome P-450 Enzyme System/genetics , Fluconazole , Fungal Proteins/genetics , Humans , Microbial Sensitivity Tests
14.
Environ Microbiol ; 22(12): 4934-4952, 2020 12.
Article En | MEDLINE | ID: mdl-33047482

The ubiquitous fungal pathogen Aspergillus fumigatus is the primary cause of opportunistic mould infections in humans. Aspergilli disseminate via asexual conidia passively travelling through air currents to germinate within a broad range of environs, wherever suitable nutrients are found. Though the average human inhales hundreds of conidia daily, A. fumigatus invasive infections primarily affect the immunocompromised. At-risk individuals can develop often fatal invasive disease for which therapeutic options are limited. Regrettably, the global insurgence of isolates resistant to the triazoles, the frontline antifungal class used in medicine and agriculture to control A. fumigatus, is complicating the treatment of patients. Triazole antifungal resistance in A. fumigatus has become recognized as a global, yet poorly comprehended, problem. Due to a multitude of factors, the magnitude of resistant infections and their contribution to treatment outcomes are likely underestimated. Current studies suggest that human drug-resistant infections can be either environmentally acquired or de novo host selected during patient therapy. While much concerning development of resistance is yet unknown, recent investigations have revealed assorted underlying mechanisms enabling triazole resistance within individual clinical and environmental isolates. This review will provide an overview of triazole resistance as it is currently understood, as well as highlight some of the prominent biological mechanisms associated with clinical and environmental resistance to triazoles in A. fumigatus.


Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/genetics , Drug Resistance, Fungal/genetics , Triazoles/pharmacology , Aspergillosis/microbiology , Humans , Microbial Sensitivity Tests
15.
mBio ; 11(3)2020 05 12.
Article En | MEDLINE | ID: mdl-32398311

Candida auris has emerged as a multidrug-resistant pathogen of great clinical concern. Approximately 90% of clinical C. auris isolates are resistant to fluconazole, the most commonly prescribed antifungal agent, and yet it remains unknown what mechanisms underpin this fluconazole resistance. To identify novel mechanisms contributing to fluconazole resistance in C. auris, fluconazole-susceptible C. auris clinical isolate AR0387 was passaged in media supplemented with fluconazole to generate derivative strains which had acquired increased fluconazole resistance in vitro Comparative analyses of comprehensive sterol profiles, [3H]fluconazole uptake, sequencing of C. auris genes homologous to genes known to contribute to fluconazole resistance in other species of Candida, and relative expression levels of C. aurisERG11, CDR1, and MDR1 were performed. All fluconazole-evolved derivative strains were found to have acquired mutations in the zinc-cluster transcription factor-encoding gene TAC1B and to show a corresponding increase in CDR1 expression relative to the parental clinical isolate, AR0387. Mutations in TAC1B were also identified in a set of 304 globally distributed C. auris clinical isolates representing each of the four major clades. Introduction of the most common mutation found among fluconazole-resistant clinical isolates of C. auris into fluconazole-susceptible isolate AR0387 was confirmed to increase fluconazole resistance by 8-fold, and the correction of the same mutation in a fluconazole-resistant isolate, AR0390, decreased fluconazole MIC by 16-fold. Taken together, these data demonstrate that C. auris can rapidly acquire resistance to fluconazole in vitro and that mutations in TAC1B significantly contribute to clinical fluconazole resistance.IMPORTANCECandida auris is an emerging multidrug-resistant pathogen of global concern, known to be responsible for outbreaks on six continents and to be commonly resistant to antifungals. While the vast majority of clinical C. auris isolates are highly resistant to fluconazole, an essential part of the available antifungal arsenal, very little is known about the mechanisms contributing to resistance. In this work, we show that mutations in the transcription factor TAC1B significantly contribute to clinical fluconazole resistance. These studies demonstrated that mutations in TAC1B can arise rapidly in vitro upon exposure to fluconazole and that a multitude of resistance-associated TAC1B mutations are present among the majority of fluconazole-resistant C. auris isolates from a global collection and appear specific to a subset of lineages or clades. Thus, identification of this novel genetic determinant of resistance significantly adds to the understanding of clinical antifungal resistance in C. auris.


Antifungal Agents/pharmacology , Candida/drug effects , Candida/genetics , Drug Resistance, Fungal/genetics , Fluconazole/pharmacology , Fungal Proteins/genetics , Microbial Sensitivity Tests , Mutation , Transcription Factors/genetics
16.
mBio ; 11(2)2020 03 24.
Article En | MEDLINE | ID: mdl-32209680

This research analyzed six Aspergillus fumigatus genes encoding putative efflux proteins for their roles as transporters. TheA. fumigatus genes abcA, abcC, abcF, abcG, abcH, and abcI were cloned into plasmids and overexpressed in a Saccharomyces cerevisiae strain in which the highly active endogenous ABC transporter gene PDR5 was deleted. The activity of each transporter was measured by efflux of rhodamine 6G and accumulation of alanine ß-naphthylamide. The transporters AbcA, AbcC, and AbcF had the strongest efflux activities of these compounds. All of the strains with plasmid-expressed transporters had more efflux activity than did the PDR5-deleted background strain. We performed broth microdilution drug susceptibility testing and agar spot assays using an array of compounds and antifungal drugs to determine the transporter specificity and drug susceptibility of the strains. The transporters AbcC and AbcF showed the broadest range of substrate specificity, while AbcG and AbcH had the narrowest range of substrates. Strains expressing the AbcA, AbcC, AbcF, or AbcI transporter were more resistant to fluconazole than was the PDR5-deleted background strain. Strains expressing AbcC and AbcF were additionally more resistant to clotrimazole, itraconazole, ketoconazole, and posaconazole than was the background strain. Finally, we analyzed the expression levels of the genes by reverse transcription-quantitative PCR (RT-qPCR) in triazole-susceptible and -resistant A. fumigatus clinical isolates. All of these transporters are expressed at a measurable level, and transporter expression varied significantly between strains, demonstrating the high degree of phenotypic variation, plasticity, and divergence of which this species is capable.IMPORTANCE One mechanism behind drug resistance is altered export out of the cell. This work is a multifaceted analysis of membrane efflux transporters in the human fungal pathogen A. fumigatus Bioinformatics evidence infers that there is a relatively large number of genes in A. fumigatus that encode ABC efflux transporters. However, very few of these transporters have been directly characterized and analyzed for their potential role in drug resistance.Our objective was to determine if these undercharacterized proteins function as efflux transporters and then to better define whether their efflux substrates include antifungal drugs used to treat fungal infections. We chose six A. fumigatus potential plasma membrane ABC transporter genes for analysis and found that all six genes produced functional transporter proteins. We used two fungal systems to look for correlations between transporter function and drug resistance. These transporters have the potential to produce drug-resistant phenotypes in A. fumigatus Continued characterization of these and other transporters may assist in the development of efflux inhibitor drugs.


ATP-Binding Cassette Transporters/metabolism , Aspergillus fumigatus/genetics , Fungal Proteins/metabolism , Saccharomyces cerevisiae/drug effects , ATP-Binding Cassette Transporters/genetics , Antifungal Agents/pharmacology , Fungal Proteins/genetics , Gene Deletion , Microbial Sensitivity Tests , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity
17.
Pharmacotherapy ; 40(4): 343-356, 2020 04.
Article En | MEDLINE | ID: mdl-32060929

Imipenem-cilastatin-relebactam (IMI-REL) is a novel ß-lactam-ß-lactamase inhibitor combination recently approved for the treatment of complicated urinary tract infections (cUTIs) and complicated intraabdominal infections (cIAIs). Relebactam is a ß-lactamase inhibitor with the ability to inhibit a broad spectrum of ß-lactamases such as class A and class C ß-lactamases, including carbapenemases. The addition of relebactam to imipenem restores imipenem activity against several imipenem-resistant bacteria, including Enterobacteriaceae and Pseudomonas aeruginosa. Clinical data demonstrate that IMI-REL is well tolerated and effective in the treatment of cUTIs and cIAIs due to imipenem-resistant bacteria. In a phase III trial comparing IMI-REL with imipenem plus colistin, favorable clinical response was achieved in 71% and 70% of patients, respectively. Available clinical and pharmacokinetic data support the approved dosage of a 30-minute infusion of imipenem 500 mg-cilastatin 500 mg-relebactam 250 mg every 6 hours, along with dosage adjustments based on renal function. In this review, we describe the chemistry, mechanism of action, spectrum of activity, pharmacokinetics and pharmacodynamics, and clinical efficacy, and safety and tolerability of this new agent. The approval of IMI-REL represents another important step in the ongoing fight against multidrug-resistant gram-negative pathogens.


Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacterial Infections/drug therapy , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Cilastatin/administration & dosage , Cilastatin/pharmacology , Cilastatin/therapeutic use , Drug Therapy, Combination , Gram-Negative Bacteria/drug effects , Humans , Imipenem/administration & dosage , Imipenem/pharmacology , Imipenem/therapeutic use , Microbial Sensitivity Tests
18.
mBio ; 10(2)2019 04 02.
Article En | MEDLINE | ID: mdl-30940706

Aspergillus fumigatus is the predominant pathogen of invasive aspergillosis, a disease state credited with over 200,000 life-threatening infections each year. The triazole class of antifungals are clinically essential to the treatment of invasive aspergillosis, both as frontline and as salvage therapy. Unfortunately, resistance to the triazoles among A. fumigatus isolates is now increasingly reported worldwide, and a large proportion of this resistance remains unexplained. In this work, we characterize the contributions of previously identified mechanisms of triazole resistance, including mutations in the sterol-demethylase-encoding gene cyp51A, overexpression of sterol-demethylase genes, and overexpression of the efflux pump-encoding gene abcC, among a large collection of highly triazole-resistant clinical A. fumigatus isolates. Upon revealing that these mechanisms alone cannot substantiate the majority of triazole resistance exhibited by this collection, we subsequently describe the identification and characterization of a novel genetic determinant of triazole resistance. Mutations in the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase-encoding gene, hmg1, were identified in a majority of triazole-resistant clinical isolates in our collection. Introduction of three different hmg1 mutations, predicted to encode residue alterations in the conserved sterol sensing domain of Hmg1, resulted in significantly increased resistance to the triazole class of agents. Additionally, correction of a hmg1 mutation in a pan-triazole-resistant clinical isolate of A. fumigatus with a novel Cas9-ribonucleoprotein-mediated system was shown to restore clinical susceptibility to all triazole agents. Mutations in hmg1 were also shown to lead to the accumulation of ergosterol precursors, such as eburicol, by sterol profiling, while not altering the expression of sterol-demethylase genes.IMPORTANCEAspergillus fumigatus is the predominant pathogen of invasive aspergillosis, a disease state credited with over 200,000 life-threatening infections annually. The triazole class of antifungals are clinically essential to the treatment of invasive aspergillosis. Unfortunately, resistance to the triazoles among A. fumigatus isolates is now increasingly reported worldwide. In this work, we challenge the current paradigm of clinical triazole resistance in A. fumigatus, by first demonstrating that previously characterized mechanisms of resistance have nominal impact on triazole susceptibility and subsequently identifying a novel mechanism of resistance with a profound impact on clinical triazole susceptibility. We demonstrate that mutations in the HMG-CoA reductase gene, hmg1, are common among resistant clinical isolates and that hmg1 mutations confer resistance to all clinically available triazole antifungals.


Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/enzymology , Drug Resistance, Fungal , Hydroxymethylglutaryl CoA Reductases/metabolism , Mutant Proteins/metabolism , Triazoles/pharmacology , Aspergillosis/microbiology , Aspergillus fumigatus/genetics , Aspergillus fumigatus/isolation & purification , Humans , Hydroxymethylglutaryl CoA Reductases/genetics , Mutant Proteins/genetics
19.
Article En | MEDLINE | ID: mdl-30718246

Candida auris has rapidly emerged as a health care-associated and multidrug-resistant pathogen of global concern. In this work, we examined the relative expression of the four C. auris genes with the highest degree of homology to Candida albicansCDR1 and MDR1 among three triazole-resistant clinical isolates as compared to the triazole-susceptible genome reference clinical isolate. We subsequently utilized a novel Cas9-mediated system for genetic manipulations to delete C. aurisCDR1 and MDR1 in both a triazole-resistant clinical isolate and a susceptible reference strain and observed that MICs for all clinically available triazoles decreased as much as 128-fold in the CDR1 deletion strains. The findings of this work reveal for the first time that C. aurisCDR1 and MDR1 are more highly expressed among triazole-resistant clinical isolates of C. auris and that the overexpression of CDR1 is a significant contributor to clinical triazole resistance.


Antifungal Agents/pharmacology , Candida/drug effects , Candida/genetics , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , CRISPR-Associated Protein 9/genetics , Candida/isolation & purification , Candidiasis/microbiology , Drug Resistance, Fungal/drug effects , Fluconazole/pharmacology , Gene Deletion , Gene Expression Regulation, Fungal , Humans , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Microorganisms, Genetically-Modified , Triazoles/pharmacology
20.
J Antimicrob Chemother ; 74(4): 835-842, 2019 04 01.
Article En | MEDLINE | ID: mdl-30561652

Invasive aspergillosis is a leading cause of morbidity and mortality among immunocompromised populations and is predicted to cause more than 200 000 life-threatening infections each year. Aspergillus fumigatus is the most prevalent pathogen isolated from patients with invasive aspergillosis, accounting for more than 60% of all cases. Currently, the only antifungal agents available with consistent activity against A. fumigatus are the mould-active triazoles and amphotericin B, of which the triazoles commonly represent both front-line and salvage therapeutic options. Unfortunately, the treatment of infections caused by A. fumigatus has recently been further complicated by the global emergence of triazole resistance among both clinical and environmental isolates. Mutations in the A. fumigatus sterol-demethylase gene cyp51A, overexpression of cyp51A and overexpression of efflux pump genes are all known to contribute to resistance, yet much of the triazole resistance among A. fumigatus still remains unexplained. Also lacking is clinical experience with therapeutic options for the treatment of triazole-resistant A. fumigatus infections and mortality associated with these infections remains unacceptably high. Thus, further research is greatly needed to both better understand the emerging threat of triazole-resistant A. fumigatus and to develop novel therapeutic strategies to combat these resistant infections.


Antifungal Agents/pharmacology , Aspergillosis/epidemiology , Aspergillosis/microbiology , Aspergillus fumigatus/drug effects , Drug Resistance, Fungal , Triazoles/pharmacology , Aspergillosis/mortality , Aspergillus fumigatus/genetics , Environmental Microbiology , Gene Expression , Global Health , Humans , Mutation , Prevalence
...