Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R35-R45, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38708544

RESUMEN

Pregnancy is associated with neural and behavioral plasticity, systemic inflammation, and oxidative stress, yet the impact of inflammation and oxidative stress on maternal neural and behavioral plasticity during pregnancy is unclear. We hypothesized that healthy pregnancy transiently reduces learning and memory and these deficits are associated with pregnancy-induced elevations in inflammation and oxidative stress. Cognitive performance was tested with novel object recognition (recollective memory), Morris water maze (spatial memory), and open field (anxiety-like) behavior tasks in female Sprague-Dawley rats of varying reproductive states [nonpregnant (nulliparous), pregnant (near term), and 1-2 mo after pregnancy (primiparous); n = 7 or 8/group]. Plasma and CA1 proinflammatory cytokines were measured with a MILLIPLEX magnetic bead assay. Plasma oxidative stress was measured via advanced oxidation protein products (AOPP) assay. CA1 markers of oxidative stress, neuronal activity, and apoptosis were quantified via Western blot analysis. Our results demonstrate that CA1 oxidative stress-associated markers were elevated in pregnant compared with nulliparous rats (P ≤ 0.017) but there were equivalent levels in pregnant and primiparous rats. In contrast, reproductive state did not impact CA1 inflammatory cytokines, neuronal activity, or apoptosis. Likewise, there was no effect of reproductive state on recollective or spatial memory. Even so, spatial learning was impaired (P ≤ 0.007) whereas anxiety-like behavior (P ≤ 0.034) was reduced in primiparous rats. Overall, our data suggest that maternal hippocampal CA1 is protected from systemic inflammation but vulnerable to peripartum oxidative stress. Peripartum oxidative stress elevations, such as in pregnancy complications, may contribute to peripartum neural and behavioral plasticity.NEW & NOTEWORTHY Healthy pregnancy is associated with elevated maternal systemic and brain oxidative stress. During postpregnancy, brain oxidative stress remains elevated whereas systemic oxidative stress is resolved. This sustained maternal brain oxidative stress is associated with learning impairments and decreased anxiety-like behavior during the postpregnancy period.


Asunto(s)
Estrés Oxidativo , Ratas Sprague-Dawley , Animales , Femenino , Embarazo , Ratas , Inflamación/metabolismo , Inflamación/fisiopatología , Memoria , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiopatología , Memoria Espacial , Citocinas/metabolismo , Citocinas/sangre , Ansiedad/metabolismo , Neuronas/metabolismo , Aprendizaje por Laberinto , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/sangre
2.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38328246

RESUMEN

Pregnancy is associated with neural and behavioral plasticity, systemic inflammation, and oxidative stress. Yet, the impact of systemic inflammation and oxidative stress on maternal neural and behavioral plasticity during pregnancy are unclear. We hypothesized that the maternal hippocampal CA1, a brain region associated with cognition, would be protected from pregnancy-associated systemic elevations in inflammation and oxidative stress, mediating stable peripartum cognitive performance. Cognitive performance was tested using novel object recognition (recollective memory), Morris water maze (spatial memory), and open field (anxiety-like) behavior tasks in female Sprague-Dawley rats of varying reproductive states [non-pregnant (nulliparous), pregnant (near term), and two months post-pregnancy (primiparous); n = 7-8/group]. Plasma and CA1 proinflammatory cytokines were measured using a MILLIPLEX® magnetic bead assay. Plasma oxidative stress was measured via advanced oxidation protein products (AOPP) assay. CA1 markers of oxidative stress, neuronal activity, and apoptosis were quantified via western blotting. Our results demonstrate CA1 oxidative stress-associated markers were elevated in pregnant compared to nulliparous rats ( p ≤ 0.017) but were equivalent levels in pregnant and primiparous rats. In contrast, reproductive state did not impact CA1 inflammatory cytokines, neuronal activity, or apoptosis. Likewise, there was no effect of reproductive state on recollective or spatial memory. Even so, spatial learning was impaired ( p ≤ 0.007) while anxiety-like behavior ( p ≤ 0.034) was reduced in primiparous rats. Overall, our data suggest maternal hippocampal CA1 is protected from systemic inflammation but vulnerable to peripartum oxidative stress. Thus, peripartum oxidative stress elevations, such as in pregnancy complications, may contribute to peripartum neural and behavioral plasticity.

3.
J Neurophysiol ; 128(6): 1383-1394, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36321700

RESUMEN

Chronic intermittent hypoxia (CIH), an animal model of sleep apnea, has been shown to alter the activity of second-order chemoreceptor neurons in the caudal nucleus of the solitary tract (cNTS). Although numerous studies have focused on excitatory plasticity, few studies have explored CIH-induced plasticity impacting inhibitory inputs to NTS neurons, and the roles of GABAergic and glycinergic inputs on heightened cNTS excitability following CIH are unknown. In addition, changes in astrocyte function may play a role in cNTS plasticity responses to CIH. This study tested the effects of a 7-day CIH protocol on miniature inhibitory postsynaptic currents (mIPSCs) in cNTS neurons receiving chemoreceptor afferents. Normoxia-treated rats primarily displayed GABA mIPSCs, whereas CIH-treated rats exhibited a shift toward combined GABA/glycine-mediated mIPSCs. CIH increased glycinergic mIPSC amplitude and area. This shift was not observed in dorsal motor nucleus of the vagus neurons or cNTS cells from females. Immunohistochemistry showed that strengthened glycinergic mIPSCs were associated with increased glycine receptor protein and were dependent on receptor trafficking in CIH-treated rats. In addition, CIH altered astrocyte morphology in the cNTS, and inactivation of astrocytes following CIH reduced glycine receptor-mediated mIPSC frequency and overall mIPSC amplitude. In cNTS, CIH produced changes in glycine signaling that appear to reflect increased trafficking of glycine receptors to the cell membrane. Increased glycine signaling in cNTS associated with CIH also appears to be dependent on astrocytes. Additional studies will be needed to determine how CIH influences glycine receptor expression and astrocyte function in cNTS.NEW & NOTEWORTHY Chronic intermittent hypoxia (CIH) has been used to mimic the hypoxemia associated with sleep apnea and determine how these hypoxemias influence neural function. The nucleus of the solitary tract is the main site for chemoreceptor input to the CNS, but how CIH influences NTS inhibition has not been determined. These studies show that CIH increases glycine-mediated miniature IPSCs through mechanisms that depend on protein trafficking and astrocyte activation.


Asunto(s)
Síndromes de la Apnea del Sueño , Núcleo Solitario , Ratas , Animales , Núcleo Solitario/metabolismo , Receptores de Glicina/metabolismo , Ratas Sprague-Dawley , Hipoxia , Glicina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Síndromes de la Apnea del Sueño/metabolismo , Inhibición Neural/fisiología
4.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R797-R809, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36189988

RESUMEN

Dilutional hyponatremia associated with liver cirrhosis is due to inappropriate release of arginine vasopressin (AVP). Elevated plasma AVP causes water retention resulting in a decrease in plasma osmolality. Cirrhosis, in this study caused by ligation of the common bile duct (BDL), leads to a decrease in central vascular blood volume and hypotension, stimuli for nonosmotic AVP release. The A1/A2 neurons stimulate the release of AVP from the supraoptic nucleus (SON) in response to nonosmotic stimuli. We hypothesize that the A1/A2 noradrenergic neurons support chronic release of AVP in cirrhosis leading to dilutional hyponatremia. Adult, male rats were anesthetized with 2-3% isoflurane (mixed with 95% O2/5% CO2) and injected in the SON with anti-dopamine ß-hydroxylase (DBH) saporin (DSAP) or vehicle followed by either BDL or sham surgery. Plasma copeptin, osmolality, and hematocrit were measured. Brains were processed for ΔFosB, dopamine ß-hydroxylase (DBH), and AVP immunohistochemistry. DSAP injection: 1) significantly reduced the number of DBH immunoreactive A1/A2 neurons (A1, P < 0.0001; A2, P = 0.0014), 2) significantly reduced the number of A1/A2 neurons immunoreactive to both DBH and ΔFosB positive neurons (A1, P = 0.0015; A2, P < 0.0001), 3) reduced the number of SON neurons immunoreactive to both AVP and ΔFosB (P < 0.0001), 4) prevented the increase in plasma copeptin observed in vehicle-injected BDL rats (P = 0.0011), and 5) normalized plasma osmolality and hematocrit (plasma osmolality, P = 0.0475; hematocrit, P = 0.0051) as compared with vehicle injection. Our data suggest that A1/A2 neurons contribute to increased plasma copeptin and hypoosmolality in male BDL rats.


Asunto(s)
Hiponatremia , Núcleo Supraóptico , Animales , Ratas , Masculino , Núcleo Supraóptico/metabolismo , Norepinefrina , Arginina Vasopresina , Dopamina beta-Hidroxilasa/metabolismo , Cirrosis Hepática
5.
Biol Sex Differ ; 13(1): 54, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36175941

RESUMEN

BACKGROUND: Hypoxia is associated with pregnancy complications, such as preeclampsia, placental abruption, and gestational sleep apnea. Hypoxic insults during gestation can impact the brain maturation of cortical and subcortical pathways, such as the nigrostriatal pathway. However, the long-term effects of in utero hypoxic stress exposure on brain maturation in offspring are unclear, especially exposure during late gestation. The purpose of this study was to determine the impact of gestational hypoxia in late pregnancy on developmental programming of subcortical brain maturation by focusing on the nigrostriatal pathway. METHODS: Timed pregnant Long-Evans rats were exposed to chronic intermittent hypoxia or room air normoxia from gestational day (GD) 15-19 (term 22-23 days). Male and female offspring were assessed during two critical periods: puberty from postnatal day (PND) 40-45 or young adulthood (PND 60-65). Brain maturation was quantified by examining (1) the structural development of the nigrostriatal pathway via analysis of locomotor behaviors and the substantia nigra dopaminergic neuronal cell bodies and (2) the refinement of the nigrostriatal pathway by quantifying ultrasonic vocalizations (USVs). RESULTS: The major findings of this study are gestational hypoxia has age- and sex-dependent effects on subcortical brain maturation in offspring by adversely impacting the refinement of the nigrostriatal pathway in the absence of any effects on the structural development of the pathway. During puberty, female offspring were impacted more than male offspring, as evidenced by decreased USV call frequency, chirp USV call duration, and simple call frequency. In contrast, male offspring were impacted more than female offspring during young adulthood, as evidenced by increased latency to first USV, decreased simple USV call intensity, and increased harmonic USV call bandwidth. No effects of gestational hypoxia on the structural development of the nigrostriatal pathway were observed. CONCLUSIONS: These novel findings demonstrate hypoxic insults during pregnancy mediate developmental programming of the cortical and subcortical pathways, in which male offspring exhibit long-term adverse effects compared to female offspring. Impairment of cortical and subcortical pathways maturation, such as the nigrostriatal pathway, may increase risk for neuropsychiatric disorders (e.g., mood disorders, cognitive dysfunction, brain connectivity dysfunction).


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Animales , Encéfalo/metabolismo , Femenino , Humanos , Hipoxia/complicaciones , Hipoxia/metabolismo , Masculino , Placenta/metabolismo , Embarazo , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley
6.
Molecules ; 27(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35744897

RESUMEN

Green synthesis of silver-containing nanocomposites based on polylactide (PLA) was carried out in two ways. With the use of green tea extract, Ag+ ions were reduced to silver nanoparticles with their subsequent introduction into the PLA (mechanical method) and Ag+ ions were reduced in the polymer matrix of PLA-AgPalmitate (PLA-AgPalm) (in situ method). Structure, morphology and thermophysical properties of nanocomposites PLA-Ag were studied by FTIR spectroscopy, wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) methods. The antimicrobial, antiviral, and cytotoxic properties were studied as well. It was found that the mechanical method provides the average size of silver nanoparticles in the PLA of about 16 nm, while in the formation of samples by the in situ method their average size was 3.7 nm. The strong influence of smaller silver nanoparticles (3.7 nm) on the properties of nanocomposites was revealed, as with increasing nanosilver concentration the heat resistance and glass transition temperature of the samples decreases, while the influence of larger particles (16 nm) on these parameters was not detected. It was shown that silver-containing nanocomposites formed in situ demonstrate antimicrobial activity against gram-positive bacterium S. aureus, gram-negative bacteria E. coli, P. aeruginosa, and the fungal pathogen of C. albicans, and the activity of the samples increases with increasing nanoparticle concentration. Silver-containing nanocomposites formed by the mechanical method have not shown antimicrobial activity. The relative antiviral activity of nanocomposites obtained by two methods against influenza A virus, and adenovirus serotype 2 was also revealed. The obtained nanocomposites were not-cytotoxic, and they did not inhibit the viability of MDCK or Hep-2 cell cultures.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanocompuestos , Antibacterianos/química , Antiinfecciosos/farmacología , Antivirales/farmacología , Escherichia coli , Iones , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Nanocompuestos/química , Poliésteres/química , Pseudomonas aeruginosa , Plata/química , Plata/farmacología , Staphylococcus aureus
7.
ACS Appl Bio Mater ; 5(6): 2576-2585, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35532757

RESUMEN

Antimicrobial and antiviral nanocomposites based on polylactic acid (PLA) and chitosan were synthesized by a thermochemical reduction method of Ag+ ions in the PLA-Ag+-chitosan polymer films. Features of the structural, morphological, thermophysical, antimicrobial, antiviral, and cytotoxic properties of PLA-Ag-chitosan nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and antiviral, antimicrobial, and cytotoxic studies. The effects of temperature and the duration of reduction of Ag+ ions on the structure of PLA-Ag-chitosan nanocomposites were established. During the thermochemical reduction (T = 160 °C, t = 5 min) of silver palmitate ions in PLA-Ag+-chitosan polymer films, Ag nanoparticles with an average size of 4.2 nm were formed. PLA-Ag-chitosan polymer nanocomposites have strong antimicrobial activity against S. aureus and E. coli strains. In particular, for PLA-chitosan samples containing 4% Ag, the diameters of the S. aureus and E. coli growth inhibition zones were 25.8 and 25.0 mm, respectively. The antiviral activity of the nanocomposites against influenza A virus, herpes simplex virus type 1, and adenovirus serotype 2 was also revealed. The PLA-4%Ag-chitosan nanocomposites completely inhibited the cytopathic effect (CPE) of herpes virus type 1 by 5.12 log10TCID50/mL (high antiviral activity) and the development of the CPE of influenza virus and adenovirus by 0.60 and 1.07 log10TCID50/mL (relative antiviral activity). The obtained nanocomposites were not cytotoxic; they did not inhibit the viability of MDCK, BHK-21, and Hep-2 cell cultures.


Asunto(s)
Antiinfecciosos , Quitosano , Nanopartículas del Metal , Nanocompuestos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antivirales/farmacología , Quitosano/farmacología , Escherichia coli , Nanopartículas del Metal/uso terapéutico , Nanocompuestos/química , Poliésteres/farmacología , Plata/farmacología , Staphylococcus aureus
8.
J Endocr Soc ; 6(5): bvac030, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35308305

RESUMEN

Sex differences have been observed in multiple oxidative stress-associated neurodegenerative diseases. Androgens, such as testosterone, can exacerbate oxidative stress through a membrane androgen receptor (mAR), AR45, localized to lipid rafts in the plasma membrane. The goal of this study is to determine if interfering with mAR localization to cholesterol-rich lipid rafts decreases androgen induced neurotoxicity under oxidative stress environments. We hypothesize that cholesterol-rich caveolar lipid rafts are necessary for androgens to induce oxidative stress generation in neurons via the mAR localized within the plasma membrane. Nystatin was used to sequester cholesterol and thus decrease cholesterol-rich caveolar lipid rafts in a neuronal cell line (N27 cells). Nystatin was applied prior to testosterone exposure in oxidatively stressed N27 cells. Cell viability, endocytosis, and protein analysis of oxidative stress, apoptosis, and mAR localization were conducted. Our results show that the loss of lipid rafts via cholesterol sequestering blocked androgen-induced oxidative stress in cells by decreasing the localization of mAR to caveolar lipid rafts.

9.
Biol Sex Differ ; 11(1): 12, 2020 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-32223745

RESUMEN

BACKGROUND: The role of sex hormones on cellular function is unclear. Studies show androgens and estrogens are protective in the CNS, whereas other studies found no effects or damaging effects. Furthermore, sex differences have been observed in multiple oxidative stress-associated CNS disorders, such as Alzheimer's disease, depression, and Parkinson's disease. The goal of this study is to examine the relationship between sex hormones (i.e., androgens and estrogens) and oxidative stress on cell viability. METHODS: N27 and PC12 neuronal and C6 glial phenotypic cell lines were used. N27 cells are female rat derived, whereas PC12 cells and C6 cells are male rat derived. These cells express estrogen receptors and the membrane-associated androgen receptor variant, AR45, but not the full-length androgen receptor. N27, PC12, and C6 cells were exposed to sex hormones either before or after an oxidative stressor to examine neuroprotective and neurotoxic properties, respectively. Estrogen receptor and androgen receptor inhibitors were used to determine the mechanisms mediating hormone-oxidative stress interactions on cell viability. Since the presence of AR45 in the human brain tissue was unknown, we examined the postmortem brain tissue from men and women for AR45 protein expression. RESULTS: Neither androgens nor estrogens were protective against subsequent oxidative stress insults in glial cells. However, these hormones exhibited neuroprotective properties in neuronal N27 and PC12 cells via the estrogen receptor. Interestingly, a window of opportunity exists for sex hormone neuroprotection, wherein temporary hormone deprivation blocked neuroprotection by sex hormones. However, if sex hormones are applied following an oxidative stressor, they exacerbated oxidative stress-induced cell loss in neuronal and glial cells. CONCLUSIONS: Sex hormone action on cell viability is dependent on the cellular environment. In healthy neuronal cells, sex hormones are protective against oxidative stress insults via the estrogen receptor, regardless of sex chromosome complement (XX, XY). However, in unhealthy (e.g., high oxidative stress) cells, sex hormones exacerbated oxidative stress-induced cell loss, regardless of cell type or sex chromosome complement. The non-genomic AR45 receptor, which is present in humans, mediated androgen's damaging effects, but it is unknown which receptor mediated estrogen's damaging effects. These differential effects of sex hormones that are dependent on the cellular environment, receptor profile, and cell type may mediate the observed sex differences in oxidative stress-associated CNS disorders.


Asunto(s)
Andrógenos/farmacología , Estradiol/farmacología , Estrógenos/farmacología , Neuroprotección/efectos de los fármacos , Estrés Oxidativo , Testosterona/farmacología , Anciano , Anciano de 80 o más Años , Animales , Línea Celular , Femenino , Humanos , Masculino , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Caracteres Sexuales
10.
Age (Dordr) ; 36(4): 9685, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25015774

RESUMEN

Oxidative stress has long been implicated in the pathogenesis of various neurodegenerative disorders such as Alzheimer's disease and stroke. While high levels of oxidative stress are generally associated with cell death, a slight rise of reactive oxygen species (ROS) levels can be protective by "preconditioning" cells to develop a resistance against subsequent challenges. However, the mechanisms underlying such preconditioning (PC)-induced protection are still poorly understood. Previous studies have supported a role of ERK5 (mitogen-activated protein [MAP] kinase 5) in neuroprotection and ischemic tolerance in the hippocampus. In agreement with these findings, our data suggest that ERK5 mediates both hydrogen peroxide (H2O2)-induced PC as well as nerve growth factor (NGF)-induced neuroprotection. Activation of ERK5 partially rescued pheochromocytoma PC12 cells as well as primary hippocampal neurons from H2O2-caused death, while inhibition of ERK5 abolished NGF or PC-induced protection. These results implicate ERK5 signaling as a common downstream pathway for NGF and PC. Furthermore, both NGF and PC increased the expression of the transcription factor, KLF4, which can initiate an anti-apoptotic response in various cell types. Induction of KLF4 by NGF or PC was blocked by siERK5, suggesting that ERK5 is required in this process. siKLF4 can also attenuate NGF- or PC-induced neuroprotection. Overexpression of active MEK5 or KLF4 in H2O2-stressed cells increased Bcl-2/Bax ratio and the expression of NAIP (neuronal apoptosis inhibitory protein). Taken together, our data suggest that ERK5/KLF4 cascade is a common signaling pathway shared by at least two important mechanisms by which neurons can be protected from cell death.


Asunto(s)
Apoptosis , Regulación de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Factores de Transcripción de Tipo Kruppel/genética , Proteína Quinasa 7 Activada por Mitógenos/genética , Factor de Crecimiento Nervioso/farmacología , Enfermedades Neurodegenerativas/genética , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/patología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/biosíntesis , Ratones , Proteína Quinasa 7 Activada por Mitógenos/biosíntesis , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , ARN/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos
11.
Artículo en Inglés | MEDLINE | ID: mdl-22860237

RESUMEN

To date many aspects of neurons and glia biology remain elusive, due in part to the cellular and molecular complexity of the brain. In recent decades, cell models from different brain areas have been established and proven invaluable toward understanding this complexity. In the field of steroid hormone neurobiology, an important question is: what is the profile of steroid hormone receptor expression in these specific cell lines? Currently, a clear summary of such receptor profiling is lacking. For this reason, we summarized in this review the expression of estrogen, progesterone, and androgen receptors in several widely used cell lines (glial and neuronal) derived from the forebrain and midbrain, based on our own data and that from the literature. Such information will aid in the selection of specific cell lines used to test hypotheses related to the biology of estrogens, progestins, and/or androgens.

12.
Endocrinology ; 153(9): 4389-400, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22778217

RESUMEN

Progesterone (P4) is cytoprotective in various experimental models, but our understanding of the mechanisms involved is still incomplete. Our laboratory has implicated brain-derived neurotrophic factor (BDNF) signaling as an important mediator of P4's protective actions. We have shown that P4 increases the expression of BDNF, an effect mediated by the classical P4 receptor (PR), and that the protective effects of P4 were abolished using inhibitors of Trk receptor signaling. In an effort to extend our understanding of the interrelationship between P4 and BDNF signaling, we determined whether P4 influenced BDNF release and examined the role of the classical PR and a putative membrane PR, progesterone receptor membrane component-1 (Pgrmc1), as mediators of this response. Given recent data from our laboratory that supported the role of ERK5 in BDNF release, we also tested whether P4-induced BDNF release was mediated by ERK5. In this study, we found that P4 and the membrane-impermeable P4 (P4-BSA) both induced BDNF release from cultured C6 glial cells and primary astrocytes. Both these cells lack the classical nuclear/intracellular PR but express high levels of membrane-associated PR, including Pgrmc1. Using RNA interference-mediated knockdown of Pgrmc1 expression, we determined that P4-induced BDNF release was dependent on the expression of Pgrmc1, although pharmacological inhibition of the PR failed to alter the effects of P4. Furthermore, the BDNF release elicited by P4 was mediated by ERK5, and not ERK1/2. Collectively, our data describe that P4 elicits an increase in BDNF release from glia via a Pgrmc1-induced ERK5 signaling mechanism and identify Pgrmc1 as a potential therapeutic target for future hormone-based drug development for the treatment of such degenerative diseases as Alzheimer's disease as well as other diseases wherein neurotrophin dysregulation is noted.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Progesterona/farmacología , Receptores de Progesterona/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Línea Celular Tumoral , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , ARN Interferente Pequeño , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
J Neurosci Res ; 89(10): 1542-50, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21647938

RESUMEN

Neurotrophins play essential roles in the development, differentiation, and survival of neuronal and nonneuronal cells. Alterations in neurotrophin expression have been implicated in a variety of neurodegenerative disorders. Dysregulation of brain-derived neurotrophic factor (BDNF) has been implicated in deficits of long-term potentiation and cognition and may contribute to the development of Alzheimer's disease (AD). In this study, we used complementary pharmacological and molecular approaches to evaluate the role of ERK1/2 and ERK5, two members of the MAPK pathway associated with neuroprotection, in regulating BDNF expression in C6 glial cells and primary astrocytes. Our data revealed that U0126, an inhibitor of both ERK5 and ERK1/2, increased the levels of BDNF mRNA, whereas the MEK1/2-specific inhibitor PD184352 did not, suggesting that ERK5 exerts negative control over BDNF expression. This was supported by experiments in which RNAi-mediated depletion of ERK5 led to an increase in BDNF. In contrast, transfection with constitutively active MEK5 resulted in an inhibition of BDNF expression, confirming the inhibitory role of ERK5 in the regulation of BDNF. Interestingly, transfection with the dominant active mutant of MEK1 (MEKR4F), the upstream activator of ERK1/2, resulted in a modest increase in BDNF levels. Collectively, our data suggest that ERK5 and ERK1/2 exert opposite effects on BDNF expression and support the hypothesis that an imbalance of these two signaling pathways may contribute to the pathology of diseases in which neurotrophin dysregulation is noted.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Proteína Quinasa 7 Activada por Mitógenos/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/enzimología , Astrocitos/patología , Benzamidas/farmacología , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Butadienos/farmacología , Línea Celular Tumoral , Glioma/enzimología , Glioma/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 7 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 7 Activada por Mitógenos/genética , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Nitrilos/farmacología , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley
14.
J Recept Signal Transduct Res ; 29(6): 326-41, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19899956

RESUMEN

Ca(2+) release from intracellular stores mediated by endoplasmic reticulum membrane ryanodine receptors (RyR) plays a key role in activating and synchronizing downstream Ca(2+)-dependent mechanisms, in different cells varying from apoptosis to nuclear transcription and development of defensive responses. Recently discovered, atypical "nongenomic" effects mediated by estrogen receptors (ER) include rapid Ca(2+) release upon estrogen exposure in conditions implicitly suggesting involvement of RyRs. In the present study, we report various levels of colocalization between RyR type 2 (RyR2) and ER type beta (ER beta) in the neuronal cell line HT-22, indicating a possible functional interaction. Electrophysiological analyses revealed a significant increase in single-channel ionic currents generated by mouse brain RyRs after application of the soluble monomer of the long form ER beta (ER beta 1). The effect was due to a strong increase in open probability of RyR higher open channel sublevels at cytosolic [Ca(2+)] concentrations of 100 nM, suggesting a synergistic action of ER beta 1 and Ca(2+) in RyR activation, and a potential contribution to Ca(2+)-induced Ca(2+) release rather than to basal intracellular Ca(2+) concentration level at rest. This RyR/ER beta interaction has potential effects on cellular physiology, including roles of shorter ER beta isoforms and modulation of the RyR/ER beta complexes by exogenous estrogens.


Asunto(s)
Encéfalo/metabolismo , Calcio/metabolismo , Receptor beta de Estrógeno/metabolismo , Neuronas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/agonistas , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Línea Celular , Citosol/efectos de los fármacos , Citosol/metabolismo , Humanos , Ratones , Neuronas/efectos de los fármacos , Isoformas de Proteínas/farmacología , Proteínas Recombinantes/farmacología , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos
15.
Cell Calcium ; 44(5): 507-18, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18440065

RESUMEN

Presenilin-1 (PS1) and presenilin-2 (PS2) form the catalytic core in gamma-secretase complexes and mutations in these proteins result in aberrant cleavage of amyloid precursor protein leading to accumulation of the beta-amyloid in the brain of familial Alzheimer Disease patients. PS2 possesses a hydrophilic cytoplasmic N-terminal domain (PS2 NTF1-87) dispensable for gamma-secretase activity with physiological functions yet to be determined. The effects of this soluble 87 amino acid fragment of mouse PS2 on single channel activity of mouse brain ryanodine receptors (RyR) were determined. PS2 NTF1-87 application to the cytoplasmic side of the RyR significantly increased single channel activity by favoring higher sublevel openings. The Ca(2+) activation and desensitization ranges for RyRs were unchanged. We demonstrate facilitation of RyR gating by PS2 NTF1-87, which might represent a general mechanism of RyR regulation by presenilins potentially prone to be affected by mutations or external stimuli contributing to the development of neurodegenerative diseases.


Asunto(s)
Encéfalo/metabolismo , Activación del Canal Iónico , Presenilina-2/química , Presenilina-2/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/metabolismo , Electrofisiología , Humanos , Ratones , Presenilina-2/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética
16.
Int J Biochem Cell Biol ; 40(1): 84-97, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17709274

RESUMEN

Ryanodine receptors (RyRs) amplify intracellular Ca(2+) signals by massively releasing Ca(2+) from intracellular stores. Exaggerated chronic Ca(2+) release can trigger cellular apoptosis underlying a variety of neurodegenerative diseases. Aberrant functioning of presenilin-1 (PS1) protein instigates Ca(2+)-dependent apoptosis, providing a basis for the "calcium hypothesis" of Alzheimer's disease (AD). To get insight into this problem, we hypothesized that the previously reported physical interaction between RyR and PS1 modulates functional properties of the RyR. We generated a soluble cytoplasmic N-terminal fragment of PS1 comprising the first 82 amino acid (PS1 NTF(1-82)), the candidate for interaction with putative cytoplasmic modulatory sites of the RyR, and studied its effect on single channel currents of mouse brain RyRs incorporated in lipid bilayers. PS1 NTF(1-82) strongly increased both mean currents (EC(50)=12nM, Hill coefficient (n(H)) approximately 1) and open probability for higher sublevels for single RyR channels (EC(50)=7nM, n(H) approximately 2). Bell-shaped Ca(2+)-activation curve remained unchanged, suggesting that PS1 NTF(1-82) allosterically potentiates RyRs, but that the channel still requires Ca(2+) for activation. Corroborating such an independent mechanism, the RyR potentiation by PS1 NTF(1-82) was overridden by receptor desensitization at high [Ca(2+)] (pCa>5). This potentiation of RyR by PS1 NTF(1-82) reveals a new mechanism of physiologically relevant PS1-regulated Ca(2+) release from intracellular stores, which could be alternative or additional to recently reported intracellular Ca(2+) leak channels formed by PS1 holoproteins.


Asunto(s)
Activación del Canal Iónico , Microsomas/metabolismo , Fragmentos de Péptidos/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Regulación Alostérica , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Señalización del Calcio , Cerebelo/citología , Cerebelo/metabolismo , Citosol/fisiología , Ratones , Microsomas/ultraestructura , Fragmentos de Péptidos/metabolismo , Presenilina-1/química , Relación Estructura-Actividad Cuantitativa , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Proc Natl Acad Sci U S A ; 101(49): 17056-60, 2004 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-15574500

RESUMEN

Studies of phage lambda in vivo have indicated that its own recombination enzymes, beta protein and lambda exonuclease, are capable of catalyzing two dissimilar pathways of homologous recombination that are widely distributed in nature: single-strand annealing and strand invasion. The former is an enzymatic splicing of overlapping ends of broken homologous DNA molecules, whereas the latter is characterized by the formation of a three-stranded synaptic intermediate and subsequent strand exchange. Previous studies in vitro have shown that beta protein has annealing activity, and that lambda exonuclease, acting on branched substrates, can produce a perfect splice that requires only ligation for completion. The present study shows that beta protein can initiate strand invasion in vitro, as evidenced both by the formation of displacement loops (D-loops) in superhelical DNA and by strand exchange between colinear single-stranded and double-stranded molecules. Thus, beta protein can catalyze steps that are central to both strand annealing and strand invasion pathways of recombination. These observations add beta protein to a set of diverse proteins that appear to promote recognition of homology by a unitary mechanism governed by the intrinsic dynamic properties of base pairs in DNA.


Asunto(s)
Bacteriófago lambda/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/fisiología , Recombinación Genética , Proteínas Virales/fisiología , Emparejamiento Base , Reparación del ADN , Conformación de Ácido Nucleico , Proteínas Recombinantes
18.
Proc Natl Acad Sci U S A ; 101(26): 9568-72, 2004 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-15205482

RESUMEN

Studies of rad52 mutants in Saccharomyces cerevisiae have revealed a critical role of Rad52 protein in double-strand break repair and meiosis, and roles in both RAD51-dependent and -independent pathways of recombination. In vitro, both yeast and human Rad52 proteins play auxiliary roles with RPA in the action of Rad51. Rad52 also has annealing activity and promotes the formation of D-loops in superhelical DNA. The experiments described here show that Homo sapiens (Hs)Rad52 and yeast Rad52 proteins promote strand exchange as well. Strand exchange was promoted by the N-terminal domain of HsRad52 that contains residues 1-237, which includes the residues required to form rings of Rad52, whereas other truncated domains, both N-terminal and C-terminal, were inactive. For both yeast Rad52 and HsRad52, the yield of strand-exchange reactions was proportional to the fractional A.T content of the DNA substrates, but both enzymes catalyzed exchange with substrates that contained up to at least 50% G.C. Observations made on S. cerevisiae Rad52 protein from mutants with severe recombination deficiencies indicate that the strand-exchange activity measured in vitro reflects a biologically significant property of Rad52 protein.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Composición de Base , Catálisis , ADN/química , ADN/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Mutación/genética , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Estructura Terciaria de Proteína , Proteína Recombinante y Reparadora de ADN Rad52 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...