Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int J Mol Sci ; 24(11)2023 May 31.
Article En | MEDLINE | ID: mdl-37298532

Two groups of facts have been established in previous drug development studies of the non-benzodiazepine anxiolytic fabomotizole. First, fabomotizole prevents stress-induced decrease in binding ability of the GABAA receptor's benzodiazepine site. Second, fabomotizole is a Sigma1R chaperone agonist, and exposure to Sigma1R antagonists blocks its anxiolytic effect. To prove our main hypothesis of Sigma1R involvement in GABAA receptor-dependent pharmacological effects, we performed a series of experiments on BALB/c and ICR mice using Sigma1R ligands to study anxiolytic effects of benzodiazepine tranquilizers diazepam (1 mg/kg i.p.) and phenazepam (0.1 mg/kg i.p.) in the elevated plus maze test, the anticonvulsant effects of diazepam (1 mg/kg i.p.) in the pentylenetetrazole-induced seizure model, and the hypnotic effects of pentobarbital (50 mg/kg i.p.). Sigma1R antagonists BD-1047 (1, 10, and 20 mg/kg i.p.), NE-100 (1 and 3 mg/kg i.p.), and Sigma1R agonist PRE-084 (1, 5, and 20 mg/kg i.p.) were used in the experiments. Sigma1R antagonists have been found to attenuate while Sigma1R agonists can enhance GABAARs-dependent pharmacological effects.


Anti-Anxiety Agents , Receptors, GABA-A , Animals , Mice , Anti-Anxiety Agents/pharmacology , Anticonvulsants/pharmacology , Benzodiazepines/pharmacology , Diazepam/pharmacology , Hypnotics and Sedatives/pharmacology , Ligands , Mice, Inbred ICR , Receptors, GABA-A/metabolism , Research Report , Sigma-1 Receptor
2.
Int J Mol Sci ; 22(11)2021 May 21.
Article En | MEDLINE | ID: mdl-34064275

Sigma-1 receptor (chaperone Sigma1R) is an intracellular protein with chaperone functions, which is expressed in various organs, including the brain. Sigma1R participates in the regulation of physiological mechanisms of anxiety (Su, T. P. et al., 2016) and reactions to emotional stress (Hayashi, T., 2015). In 2006, fabomotizole (ethoxy-2-[2-(morpholino)-ethylthio]benzimidazole dihydrochloride) was registered in Russia as an anxiolytic (Seredenin S. and Voronin M., 2009). The molecular targets of fabomotizole are Sigma1R, NRH: quinone reductase 2 (NQO2), and monoamine oxidase A (MAO-A) (Seredenin S. and Voronin M., 2009). The current study aimed to clarify the dependence of fabomotizole anxiolytic action on its interaction with Sigma1R and perform a docking analysis of fabomotizole interaction with Sigma1R. An elevated plus maze (EPM) test revealed that the anxiolytic-like effect of fabomotizole (2.5 mg/kg i.p.) administered to male BALB/c mice 30 min prior EPM exposition was blocked by Sigma1R antagonists BD-1047 (1.0 mg/kg i.p.) and NE-100 (1.0 mg/kg i.p.) pretreatment. Results of initial in silico study showed that fabomotizole locates in the active center of Sigma1R, reproducing the interactions with the site's amino acids common for established Sigma1R ligands, with the ΔGbind value closer to that of agonist (+)-pentazocine in the 6DK1 binding site.


Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Benzimidazoles/pharmacology , Molecular Chaperones/metabolism , Morpholines/pharmacology , Receptors, sigma/metabolism , Animals , Anisoles/pharmacology , Binding Sites/physiology , Brain/drug effects , Brain/metabolism , Ethylenediamines/pharmacology , Ligands , Male , Mice , Mice, Inbred BALB C , Propylamines/pharmacology , Russia , Sigma-1 Receptor
3.
Molecules ; 25(21)2020 Nov 04.
Article En | MEDLINE | ID: mdl-33158242

The translocator protein (TSPO, 18 kDa) plays an important role in the synthesis of neurosteroids by promoting the transport of cholesterol from the outer to the inner mitochondrial membrane, which is the rate-limiting step in neurosteroidogenesis. Stimulation of TSPO by appropriate ligands increases the level of neurosteroids. The present study describes the design, synthesis and investigation of anxiolytic-like effects of a series of N-acyl-tryptophanyl-containing dipeptides. These novel dipeptide TSPO ligands were designed with the original drug-based peptide design strategy using alpidem as non-peptide prototype. The anxiolytic activities were investigated in Balb/C mice using the illuminated open-field and elevated plus-maze tests in outbred laboratory mice ICR (CD-1). Dipeptide GD-102 (N-phenylpropionyl-l-tryptophanyl-l-leucine amide) in the dose range of 0.01-0.5 mg/kg intraperitoneally (i.p.) has a pronounced anxiolytic activity. The anxiolytic effect of GD-102 was abolished by PK11195, a specific TSPO antagonist. The structure-activity relationship study made it possible to identify a pharmacophore fragment for the dipeptide TSPO ligand. It was shown that l,d-diastereomer of GD-102 has no activity, and the d,l-isomer has less pronounced activity. The anxiolytic activity also disappears by replacing the C-amide group with the methyl ester, a free carboxyl group or methylamide. Consecutive replacement of each amino acid residue with glycine showed the importance of each of the amino acid residues in the structure of the ligand. The most active and technologically available compound GD-102, was selected for evaluation as a potential anxiolytic drug.


Anti-Anxiety Agents , Dipeptides , Maze Learning/drug effects , Receptors, GABA/metabolism , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Dipeptides/chemical synthesis , Dipeptides/chemistry , Dipeptides/pharmacology , Ligands , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Structure-Activity Relationship
...