Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
2.
Bioorg Med Chem Lett ; 20(14): 4004-11, 2010 Jul 15.
Article En | MEDLINE | ID: mdl-20541405

Novel NS3/4A protease inhibitors comprising quinazoline derivatives as P2 substituent were synthesized. High potency inhibitors displaying advantageous PK properties have been obtained through the optimization of quinazoline P2 substituents in three series exhibiting macrocyclic P2 cyclopentane dicarboxylic acid and P2 proline urea motifs. For the quinazoline moiety it was found that 8-methyl substitution in the P2 cyclopentane dicarboxylic acid series improved on the metabolic stability in human liver microsomes. By comparison, the proline urea series displayed advantageous Caco-2 permeability over the cyclopentane series. Pharmacokinetic properties in vivo were assessed in rat on selected compounds, where excellent exposure and liver-to-plasma ratios were demonstrated for a member of the 14-membered quinazoline substituted P2 proline urea series.


Carrier Proteins/antagonists & inhibitors , Hepacivirus/enzymology , Protease Inhibitors/chemical synthesis , Quinazolines/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Area Under Curve , Caco-2 Cells , Humans , Intracellular Signaling Peptides and Proteins , Microsomes, Liver/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Structure-Activity Relationship
3.
Bioorg Med Chem ; 15(22): 7184-202, 2007 Nov 15.
Article En | MEDLINE | ID: mdl-17845856

Several highly potent novel HCV NS3 protease inhibitors have been developed from two inhibitor series containing either a P2 trisubstituted macrocyclic cyclopentane- or a P2 cyclopentene dicarboxylic acid moiety as surrogates for the widely used N-acyl-(4R)-hydroxyproline in the P2 position. These inhibitors were optimized for anti HCV activities through examination of different ring sizes in the macrocyclic systems and further by exploring the effect of P4 substituent removal on potency. The target molecules were synthesized from readily available starting materials, furnishing the inhibitor compounds in good overall yields. It was found that the 14-membered ring system was the most potent in these two series and that the corresponding 13-, 15-, and 16-membered macrocyclic rings delivered less potent inhibitors. Moreover, the corresponding P1 acylsulfonamides had superior potencies over the corresponding P1 carboxylic acids. It is noteworthy that it has been possible to develop highly potent HCV protease inhibitors that altogether lack the P4 substituent. Thus the most potent inhibitor described in this work, inhibitor 20, displays a K(i) value of 0.41 nM and an EC(50) value of 9 nM in the subgenomic HCV replicon cell model on genotype 1b. To the best of our knowledge this is the first example described in the literature of a HCV protease inhibitor displaying high potency in the replicon assay and lacking the P4 substituent, a finding which should facilitate the development of orally active small molecule inhibitors against the HCV protease.


Cyclopentanes/pharmacology , Enzyme Inhibitors/pharmacology , Macrocyclic Compounds/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Binding Sites , Cell Line , Crystallography, X-Ray , Cyclization , Cyclopentanes/chemical synthesis , Cyclopentanes/chemistry , Dicarboxylic Acids/chemistry , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Models, Molecular , Molecular Conformation , Stereoisomerism , Structure-Activity Relationship , Virus Replication/drug effects
...