Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry Glob Open Sci ; 4(5): 100334, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38974933

RESUMEN

Background: Traumatic events can cause long-lasting and uncontrollable fear and anxiety. Posttraumatic stress disorder is an intractable mental disorder, and neurobiological mechanisms using animal models are expected to help development of posttraumatic stress disorder treatment. In this study, we combined multiple stress (MS) and longitudinal in vivo magnetic resonance imaging to reveal the effects of long-lasting anxiety-like behaviors on adult male rat brains. Methods: Twelve male Wistar rats (8 weeks old) were exposed to the MS of 1-mA footshocks and forced swimming, while 12 control rats were placed in a plastic cage. Contextual fear conditioning with 0.1-mA footshocks in a context different from the MS was conducted 15 days after the MS for both groups. Three retention tests were administered after 24 hours and 9 and 16 days. Two magnetic resonance imaging scans were conducted, one on the day before MS induction and one the day after the third retention test, with a 32-day interval. Results: The MS group showed greater freezing responses than the control group in all retention tests. Whole-brain voxel-based morphometry analyses revealed reduced gray matter volume in the anterior amygdalohippocampal area in MS group rats compared with control rats. These volume changes were negatively associated with freezing time in the third retention test in the MS group. Conclusions: These results suggest that individual variability in the amygdalohippocampal area may be related to long-lasting fear responses after severe stress.


Traumatic events can cause long-lasting and uncontrollable fear and anxiety. In this study, we combined multiple stress (MS) and longitudinal in vivo magnetic resonance imaging to reveal the effects of long-lasting anxiety-like behaviors on adult male rat brains. The MS group showed greater freezing responses than the control group in all retention tests. Brain morphometry analyses revealed reduced gray matter volume in the anterior amygdalohippocampal area in MS group rats compared with control rats. These results suggest that individual variability in the amygdalohippocampal area may be related to long-lasting fear responses after severe stress.

2.
Stroke Vasc Neurol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906547

RESUMEN

BACKGROUND: The current method for generating an animal model of spinal cord (SC) infarction is highly invasive and permits only short-term observation, typically limited to 28 days. OBJECTIVE: We aimed to establish a rat model characterised by long-term survival and enduring SC dysfunction by inducing selective ischaemic SC damage. METHODS: In 8-week-old male Wistar rats, a convection-enhanced delivery technique was applied to selectively deliver endothelin-1 (ET-1) to the anterior horn of the SC at the Th13 level, leading to SC infarction. The Basso, Beattie and Bresnahan (BBB) locomotor score was assessed for 56 days. The SC was examined by a laser tissue blood flowmeter, MRI, immunohistochemistry, triphenyl tetrazolium chloride (TTC) staining, Western blots and TUNEL staining. RESULTS: The puncture method was used to bilaterally inject 0.7 µL ET-1 (2.5 mg/mL) from the lateral SC into the anterior horns (40° angle, 1.5 mm depth) near the posterior root origin. Animals survived until day 56 and the BBB score was stably maintained (5.5±1.0 at day 14 and 6.2±1.0 at day 56). Rats with BBB scores ≤1 on day 1 showed stable scores of 5-6 after day 14 until day 56 while rats with BBB scores >1 on day 1 exhibited only minor dysfunction with BBB scores >12 after day 14. TTC staining, immunostaining and TUNEL staining revealed selective ischaemia and neuronal cell death in the anterior horn. T2-weighted MR images showed increasing signal intensity at the SC infarction site over time. Western blots revealed apoptosis and subsequent inflammation in SC tissue after ET-1 administration. CONCLUSIONS: Selective delivery of ET-1 into the SC allows for more precise localisation of the infarcted area at the targeted site and generates a rat SC infarction model with stable neurological dysfunction lasting 56 days.

3.
bioRxiv ; 2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37398198

RESUMEN

Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1, a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.

4.
Res Sq ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37461714

RESUMEN

Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1, a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.

5.
JACC Basic Transl Sci ; 8(3): 283-297, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37034290

RESUMEN

Right ventricular failure (RVF) is a leading cause of death in patients with pulmonary hypertension; however, effective treatment remains to be developed. We have developed low-intensity pulsed ultrasound therapy for cardiovascular diseases. In this study, we demonstrated that the expression of endothelial nitric oxide synthase (eNOS) in RVF patients was downregulated and that eNOS expression and its downstream pathway were ameliorated through eNOS activation in 2 animal models of RVF. These results indicate that eNOS is an important therapeutic target of RVF, for which low-intensity pulsed ultrasound therapy is a promising therapy for patients with RVF.

6.
Mol Psychiatry ; 27(2): 929-938, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34737458

RESUMEN

Copy number variants (CNVs) have provided a reliable entry point to identify the structural correlates of atypical cognitive development. Hemizygous deletion of human chromosome 22q11.2 is associated with impaired cognitive function; however, the mechanisms by which the CNVs contribute to cognitive deficits via diverse structural alterations in the brain remain unclear. This study aimed to determine the cellular basis of the link between alterations in brain structure and cognitive functions in mice with a heterozygous deletion of Tbx1, one of the 22q11.2-encoded genes. Ex vivo whole-brain diffusion-tensor imaging (DTI)-magnetic resonance imaging (MRI) in Tbx1 heterozygous mice indicated that the fimbria was the only region with significant myelin alteration. Electron microscopic and histological analyses showed that Tbx1 heterozygous mice exhibited an apparent absence of large myelinated axons and thicker myelin in medium axons in the fimbria, resulting in an overall decrease in myelin. The fimbria of Tbx1 heterozygous mice showed reduced mRNA levels of Ng2, a gene required to produce oligodendrocyte precursor cells. Moreover, postnatal progenitor cells derived from the subventricular zone, a source of oligodendrocytes in the fimbria, produced fewer oligodendrocytes in vitro. Behavioral analyses of these mice showed selectively slower acquisition of spatial memory and cognitive flexibility with no effects on their accuracy or sensory or motor capacities. Our findings provide a genetic and cellular basis for the compromised cognitive speed in patients with 22q11.2 hemizygous deletion.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas de Dominio T Box , Animales , Cognición , Variaciones en el Número de Copia de ADN/genética , Heterocigoto , Ratones , Oligodendroglía , Proteínas de Dominio T Box/genética
8.
Commun Biol ; 3(1): 496, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32901092

RESUMEN

Space flight produces an extreme environment with unique stressors, but little is known about how our body responds to these stresses. While there are many intractable limitations for in-flight space research, some can be overcome by utilizing gene knockout-disease model mice. Here, we report how deletion of Nrf2, a master regulator of stress defense pathways, affects the health of mice transported for a stay in the International Space Station (ISS). After 31 days in the ISS, all flight mice returned safely to Earth. Transcriptome and metabolome analyses revealed that the stresses of space travel evoked ageing-like changes of plasma metabolites and activated the Nrf2 signaling pathway. Especially, Nrf2 was found to be important for maintaining homeostasis of white adipose tissues. This study opens approaches for future space research utilizing murine gene knockout-disease models, and provides insights into mitigating space-induced stresses that limit the further exploration of space by humans.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Vuelo Espacial , Aumento de Peso , Grasa Abdominal/patología , Tejido Adiposo Blanco/patología , Envejecimiento/sangre , Envejecimiento/metabolismo , Animales , Huesos/patología , Regulación de la Expresión Génica , Homeostasis , Metaboloma , Ratones Noqueados , Músculos/patología , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Análisis de Secuencia de ARN , Estrés Fisiológico , Aumento de Peso/genética
9.
Mol Cell Biol ; 40(6)2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-31932477

RESUMEN

Nrf2 (NF-E2-related-factor 2) is a stress-responsive transcription factor that protects cells against oxidative stresses. To clarify whether Nrf2 prevents Alzheimer's disease (AD), AD model AppNL-G-F/NL-G-F knock-in (AppNLGF ) mice were studied in combination with genetic Nrf2 induction model Keap1FA/FA mice. While AppNLGF mice displayed shorter latency to escape than wild-type mice in the passive-avoidance task, the impairment was improved in AppNLGF ::Keap1FA/FA mice. Matrix-assisted laser desorption ionization-mass spectrometry imaging revealed that reduced glutathione levels were elevated by Nrf2 induction in AppNLGF ::Keap1FA/FA mouse brains compared to AppNLGF mouse brains. Genetic Nrf2 induction in AppNLGF mice markedly suppressed the elevation of the oxidative stress marker 8-OHdG and Iba1-positive microglial cell number. We also determined the plasmalogen-phosphatidylethanolamine (PlsPE) level as an AD biomarker. PlsPE containing polyunsaturated fatty acids was decreased in the AppNLGF mouse brain, but Nrf2 induction attenuated this decline. To evaluate whether pharmacological induction of Nrf2 elicits beneficial effects for AD treatment, we tested the natural compound 6-MSITC [6-(methylsulfinyl)hexyl isothiocyanate]. Administration of 6-MSITC improved the impaired cognition of AppNLGF mice in the passive-avoidance task. These results demonstrate that the induction of Nrf2 ameliorates cognitive impairment in the AD model mouse by suppressing oxidative stress and neuroinflammation, suggesting that Nrf2 is an important therapeutic target of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/fisiología , Péptidos beta-Amiloides/metabolismo , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Proteínas de Unión al Calcio/metabolismo , Cognición/efectos de los fármacos , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Glutatión/sangre , Inflamación/patología , Isotiocianatos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidiletanolaminas/metabolismo , Placa Amiloide/genética , Placa Amiloide/patología , Plasmalógenos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
J Neurosurg ; 131(3): 892-902, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30192196

RESUMEN

OBJECTIVE: The cognitive deficits of vascular dementia and the vasoocclusive state of moyamoya disease have often been mimicked with bilateral stenosis/occlusion of the common carotid artery (CCA) or internal carotid artery. However, the cerebral blood flow (CBF) declines abruptly in these models after ligation of the CCA, which differs from "chronic" cerebral hypoperfusion. While some modified but time-consuming techniques have used staged occlusion of both CCAs, others used microcoils for CCA stenosis, producing an adverse effect on the arterial endothelium. Thus, the authors developed a new chronic cerebral hypoperfusion (CCH) model with cognitive impairment and a low mortality rate in rats. METHODS: Male Sprague-Dawley rats were subjected to unilateral CCA occlusion and contralateral induction of CCA stenosis (modified CCA occlusion [mCCAO]) or a sham operation. Cortical regional CBF (rCBF) was measured using laser speckle flowmetry. Cognitive function was assessed using a Barnes circular maze (BCM). MRI studies were performed 4 weeks after the operation to evaluate cervical and intracranial arteries and parenchymal injury. Behavioral and histological studies were performed at 4 and 8 weeks after surgery. RESULTS: The mCCAO group revealed a gradual CBF reduction with a low mortality rate (2.3%). White matter degeneration was evident in the corpus callosum and corpus striatum. Although the cellular density declined in the hippocampus, MRI revealed no cerebral infarctions after mCCAO. Immunohistochemistry revealed upregulated inflammatory cells and angiogenesis in the hippocampus and cerebral cortex. Results of the BCM assessment indicated significant impairment in spatial learning and memory in the mCCAO group. Although some resolution of white matter injury was observed at 8 weeks, the animals still had cognitive impairment. CONCLUSIONS: The mCCAO is a straightforward method of producing a CCH model in rats. It is associated with a low mortality rate and could potentially be used to investigate vascular disease, moyamoya disease, and CCH. This model was verified for an extended time point of 8 weeks after surgery.


Asunto(s)
Isquemia Encefálica/etiología , Isquemia Encefálica/psicología , Arteria Carótida Común/cirugía , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Ratas , Animales , Circulación Cerebrovascular , Enfermedad Crónica , Ligadura , Masculino , Agujas , Ratas Sprague-Dawley
11.
Physiol Behav ; 129: 30-5, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24582672

RESUMEN

Exposure to stressful events affects subsequent sensitivity to fear. We investigated the long-term effects of a traumatic experience on subsequent contextual fear conditioning and anxiety-like behaviors in rats (Experiment 1). In addition, we tested whether the administration of the glucocorticoid synthesis inhibitor metyrapone (MET) attenuated the sensitization of fear induced by traumatic stress (Experiment 2). Male rats were subjected to a multiple stress (MS) session, which consisted of 4 foot shocks (1mA, 1s) and forced swimming for 20min, followed by exposure to a situational reminder 7days after the MS session. MET (25 or 100mg/kg, intraperitoneal) was administered 30min before MS. The contextual fear conditioning was performed 14days after MS. MS enhanced the conditioned fear response for at least 14days after the conditioning, and pretreatment with MET did not affect the enhancement of conditioned fear. These results suggest that glucocorticoid secretion triggered by MS is not involved in regulating the long-term stress-induced sensitization of fear.


Asunto(s)
Condicionamiento Psicológico , Miedo , Trastornos por Estrés Postraumático/psicología , Animales , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Corticosterona/sangre , Electrochoque , Miedo/efectos de los fármacos , Miedo/fisiología , Masculino , Metirapona/farmacología , Distribución Aleatoria , Ratas Wistar , Inhibidores de la Síntesis de Esteroides/farmacología , Trastornos por Estrés Postraumático/sangre , Trastornos por Estrés Postraumático/tratamiento farmacológico , Estrés Psicológico/complicaciones , Natación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...