Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
JAMA Netw Open ; 6(2): e230484, 2023 02 01.
Article En | MEDLINE | ID: mdl-36821112

Importance: Moral injury and distress (MID), which occurs when individuals have significant dissonance with their belief system and overwhelming feelings of being powerless to do what is believed to be right, has not been explored in the unique population of military surgeons deployed far forward in active combat settings. Deployed military surgeons provide care to both injured soldiers and civilians under command-driven medical rules of engagement (MROE) in variably resourced settings. This practice setting has no civilian corollary for comparison or current specific tool for measurement. Objective: To characterize MID among military surgeons deployed during periods of high casualty volumes through a mixed-methods approach. Design, Setting, and Participants: This qualitative study using convergent mixed methods was performed from May 2020 to October 2020. Participants included US military surgeons who had combat deployments to a far-forward role 2 treatment facility during predefined peak casualty periods in Iraq (2003-2008) and Afghanistan (2009-2012), as identified by purposeful snowball sampling. Data analysis was performed from October 2020 to May 2021. Main Outcomes and Measures: Measure of Moral Distress for Healthcare Professionals (MMD-HP) survey and individual, semistructured interviews were conducted to thematic saturation. Results: The total cohort included 20 surgeons (mean [SD] age, 38.1 [5.2] years); 16 (80%) were male, and 16 (80%) had 0 or 1 prior deployment. Deployment locations were Afghanistan (11 surgeons [55%]), Iraq (9 surgeons [45%]), or both locations (3 surgeons [15%]). The mean (SD) MMD-HP score for the surgeons was 104.1 (39.3). The primary thematic domains for MID were distressing outcomes (DO) and MROE. The major subdomains of DO were guilt related to witnessing horrific injuries; treating pregnant women, children, and US soldiers; and second-guessing decisions. The major subdomains for MROE were forced transfer of civilian patients, limited capabilities and resources, inexperience in specialty surgical procedures, and communication with command. Postdeployment manifestations of MID were common and affected sleep, medical practice, and interpersonal relationships. Conclusions and Relevance: In this qualitative study, MID was ubiquitous in deployed military surgeons. Thematic observations about MID, specifically concerning the domains of DO and MROE, may represent targets for further study to develop an evaluation tool of MID in this population and inform possible programs for identification and mitigation of MID.


Military Personnel , Stress Disorders, Post-Traumatic , Surgeons , Adult , Female , Humans , Male , Afghanistan/epidemiology , Iraq/epidemiology , Military Personnel/psychology , Stress Disorders, Post-Traumatic/epidemiology , Surgeons/standards , Morals , Psychological Distress
2.
ACS Omega ; 4(5): 8626-8631, 2019 May 31.
Article En | MEDLINE | ID: mdl-31459951

A spoof fingerprint was fabricated on paper and applied for a spoofing attack to unlock a smartphone on which a capacitive array of sensors had been embedded with a fingerprint recognition algorithm. Using an inkjet printer with an ink made of carbon nanotubes (CNTs), we printed a spoof fingerprint having an electrical and geometric pattern of ridges and furrows comparable to that of the real fingerprint. With this printed spoof fingerprint, we were able to unlock a smartphone successfully; this was due to the good quality of the printed CNT material, which provided electrical conductivities and structural patterns similar to those of the real fingerprint. This result confirms that inkjet-printing CNTs to fabricate a spoof fingerprint on paper is an easy, simple spoofing route from the real fingerprint and suggests a new method for outputting the physical ridges and furrows on a two-dimensional plane.

3.
J Vis Exp ; (147)2019 05 09.
Article En | MEDLINE | ID: mdl-31132052

Here, a method to synthesize cellulose nanofiber biotemplated palladium composite aerogels is presented. Noble metal aerogel synthesis methods often result in fragile aerogels with poor shape control. The use of carboxymethylated cellulose nanofibers (CNFs) to form a covalently bonded hydrogel allows for the reduction of metal ions such as palladium on the CNFs with control over both nanostructure and macroscopic aerogel monolith shape after supercritical drying. Crosslinking the carboxymethylated cellulose nanofibers is achieved using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in the presence of ethylenediamine. The CNF hydrogels maintain their shape throughout synthesis steps including covalent crosslinking, equilibration with precursor ions, metal reduction with high concentration reducing agent, rinsing in water, ethanol solvent exchange, and CO2 supercritical drying. Varying the precursor palladium ion concentration allows for control over the metal content in the final aerogel composite through a direct ion chemical reduction rather than relying on the relatively slow coalescence of pre-formed nanoparticles used in other sol-gel techniques. With diffusion as the basis to introduce and remove chemical species into and out of the hydrogel, this method is suitable for smaller bulk geometries and thin films. Characterization of the cellulose nanofiber-palladium composite aerogels with scanning electron microscopy, X-ray diffractometry, thermal gravimetric analysis, nitrogen gas adsorption, electrochemical impedance spectroscopy, and cyclic voltammetry indicates a high surface area, metallized palladium porous structure.


Cellulose/chemical synthesis , Hydrogels/chemistry , Nanofibers/chemistry , Palladium/chemistry , Adsorption , Cellulose/chemistry , Electrochemistry , Nanofibers/ultrastructure , Porosity , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Water/chemistry , X-Ray Diffraction
4.
Materials (Basel) ; 12(6)2019 Mar 18.
Article En | MEDLINE | ID: mdl-30889793

Nobel metal composite aerogel fibers made from flexible and porous biopolymers offer a wide range of applications, such as in catalysis and sensing, by functionalizing the nanostructure. However, producing these composite aerogels in a defined shape is challenging for many protein-based biopolymers, especially ones that are not fibrous proteins. Here, we present the synthesis of silk fibroin composite aerogel fibers up to 2 cm in length and a diameter of ~300 µm decorated with noble metal nanoparticles. Lyophilized silk fibroin dissolved in hexafluoro-2-propanol (HFIP) was cast in silicon tubes and physically crosslinked with ethanol to produce porous silk gels. Composite silk aerogel fibers with noble metals were created by equilibrating the gels in noble metal salt solutions reduced with sodium borohydride, followed by supercritical drying. These porous aerogel fibers provide a platform for incorporating noble metals into silk fibroin materials, while also providing a new method to produce porous silk fibers. Noble metal silk aerogel fibers can be used for biological sensing and energy storage applications.

5.
J Vis Exp ; (136)2018 06 18.
Article En | MEDLINE | ID: mdl-29985323

Here, a method to synthesize gold, palladium, and platinum aerogels via a rapid, direct solution-based reduction is presented. The combination of various precursor noble metal ions with reducing agents in a 1:1 (v/v) ratio results in the formation of metal gels within seconds to minutes compared to much longer synthesis times for other techniques such as sol-gel. Conducting the reduction step in a microcentrifuge tube or small volume conical tube facilitates a proposed nucleation, growth, densification, fusion, equilibration model for gel formation, with final gel geometry smaller than the initial reaction volume. This method takes advantage of the vigorous hydrogen gas evolution as a by-product of the reduction step, and as a consequence of reagent concentrations. The solvent accessible specific surface area is determined with both electrochemical impedance spectroscopy and cyclic voltammetry. After rinsing and freeze drying, the resulting aerogel structure is examined with scanning electron microscopy, X-ray diffractometry, and nitrogen gas adsorption. The synthesis method and characterization techniques result in a close correspondence of aerogel ligament sizes. This synthesis method for noble metal aerogels demonstrates that high specific surface area monoliths may be achieved with a rapid and direct reduction approach.


Gels/chemistry , Gold/chemistry , Palladium/chemistry , Platinum/chemistry , Catalysis
6.
Molecules ; 23(6)2018 Jun 09.
Article En | MEDLINE | ID: mdl-29890763

Noble metal aerogels offer a wide range of catalytic applications due to their high surface area and tunable porosity. Control over monolith shape, pore size, and nanofiber diameter is desired in order to optimize electronic conductivity and mechanical integrity for device applications. However, common aerogel synthesis techniques such as solvent mediated aggregation, linker molecules, sol⁻gel, hydrothermal, and carbothermal reduction are limited when using noble metal salts. Here, we present the synthesis of palladium aerogels using carboxymethyl cellulose nanofiber (CNF) biotemplates that provide control over aerogel shape, pore size, and conductivity. Biotemplate hydrogels were formed via covalent cross linking using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) with a diamine linker between carboxymethylated cellulose nanofibers. Biotemplate CNF hydrogels were equilibrated in precursor palladium salt solutions, reduced with sodium borohydride, and rinsed with water followed by ethanol dehydration, and supercritical drying to produce freestanding aerogels. Scanning electron microscopy indicated three-dimensional nanowire structures, and X-ray diffractometry confirmed palladium and palladium hydride phases. Gas adsorption, impedance spectroscopy, and cyclic voltammetry were correlated to determine aerogel surface area. These self-supporting CNF-palladium aerogels demonstrate a simple synthesis scheme to control porosity, electrical conductivity, and mechanical robustness for catalytic, sensing, and energy applications.


Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Nanofibers/chemistry , Palladium/chemistry , Dielectric Spectroscopy , Microscopy, Electron, Scanning , Thermogravimetry , X-Ray Diffraction
...