Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(1): eadi3147, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38170775

RESUMEN

Singlet fission can generate an exchange-coupled quintet triplet pair state 5TT, which could lead to the realization of quantum computing and quantum sensing using entangled multiple qubits even at room temperature. However, the observation of the quantum coherence of 5TT has been limited to cryogenic temperatures, and the fundamental question is what kind of material design will enable its room-temperature quantum coherence. Here, we show that the quantum coherence of singlet fission-derived 5TT in a chromophore-integrated metal-organic framework can be over hundred nanoseconds at room temperature. The suppressed motion of the chromophores in ordered domains within the metal-organic framework leads to the enough fluctuation of the exchange interaction necessary for 5TT generation but, at the same time, does not cause severe 5TT decoherence. Furthermore, the phase and amplitude of quantum beating depend on the molecular motion, opening the way to room-temperature molecular quantum computing based on multiple quantum gate control.

2.
Faraday Discuss ; 250(0): 233-250, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38031437

RESUMEN

In recent years, much attention has been paid to the development of thermally activated delayed fluorescence (TADF) materials with short delayed-fluorescence lifetimes to improve the device performances of OLEDs. In principle, by reducing the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) overlap, while the energy difference between S1-T1 (ΔEST) and activation energy (Ea) can be reduced, and the reverse intersystem crossing rate constant (kRISC) can be accelerated, a decrease in the radiative rate constant happens, necessitating an advanced molecular design. Furthermore, a molecule based on heptazine as a parent skeleton has recently been found to have a peculiar temperature dependence of luminescence decay, suggesting a negative gap (NG) material. In this report, we show that 9-[1,4]benzoxaborino[2,3,4-kl]phenoxaborine-7-yl-1,3,6,8-tetramethyl-9H-carbazole (TMCz-BO), a donor-acceptor linked TADF molecule with a very short delay lifetime of 750 ns, exhibits a peculiar thermal behavior similar to that of NG materials based on the temperature dependence of its luminescence decay in solution.

3.
Nat Commun ; 14(1): 1056, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859419

RESUMEN

Singlet fission (SF), converting a singlet excited state into a spin-correlated triplet-pair state, is an effective way to generate a spin quintet state in organic materials. Although its application to photovoltaics as an exciton multiplier has been extensively studied, the use of its unique spin degree of freedom has been largely unexplored. Here, we demonstrate that the spin polarization of the quintet multiexcitons generated by SF improves the sensitivity of magnetic resonance of water molecules through dynamic nuclear polarization (DNP). We form supramolecular assemblies of a few pentacene chromophores and use SF-born quintet spins to achieve DNP of water-glycerol, the most basic biological matrix, as evidenced by the dependence of nuclear polarization enhancement on magnetic field and microwave power. Our demonstration opens a use of SF as a polarized spin generator in bio-quantum technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA