Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 204: 108093, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857085

RESUMEN

The reuse of water using effluents containing antibiotics from anthropogenic activities has been mainly linked to the development of antibiotic resistance. However, we report that the development of bacterial tolerance promotes plant growth. In the present study, we aimed to evaluate the efficiency of inoculation of a new antibiotic-degrading bacterium, Erwinia strain S9, in augmenting the tolerance of pea (Pisum sativum L.) plants to tetracycline (TET) (10 and 20 mg/L). Physiological parameters such as tissue elongation and biomass, as well as relative water content, were remarkably lower in plants exposed to TET than in the control. The inhibitory effects of TET were associated with reduced CO2 assimilation, stomatal conductance, transpiration, dark respiration, and light saturation point (LSP). High concentrations of TET-induced oxidative stress are attested by the overproduction of superoxide radicals (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (HO•), resulting in increased malondialdehyde content and cell death. The high activity of antioxidant enzymes such as catalase, ascorbate peroxidase, and guaiacol peroxidase validated the proposed mechanism. Under TET stress conditions, supplementation with Erwinia strain S9 was beneficial to pea plants through osmotic adjustment, increased nutrient uptake, gas exchange optimization, and increased antioxidant activities. Its presence not only ensures plant survival and growth during antibiotic stress but also degrades TET via significant antibiotrophy. This strategy is a cost-effective environmental chemical engineering tool that can be used to depollute wastewater or to improve crop resistance in rhizofiltration treatment when treated wastewater is reused for irrigation.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Aguas Residuales , Hojas de la Planta/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Agua/metabolismo , Tetraciclinas/metabolismo , Tetraciclinas/farmacología
2.
Protoplasma ; 259(4): 949-964, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34651236

RESUMEN

Nitric oxide (NO) is a signaling molecule controlling several steps of plant development and defense process under stress conditions. NO-induced alleviation of manganese (Mn) toxicity was investigated on bean plants submitted for 28 days to 500 µM MnCl2. Manganese excess decreased plant dry weight and elongation and increased levels of reactive oxygen species and lipid peroxidation leading to up-regulation of superoxide dismutase, catalase, and ascorbate peroxidase activities. The inhibitory effects of Mn on plant growth were associated to reduction of light-saturated carbon assimilation (Amax), stomatal conductance (gs), and transpiration (E). By contrast, Mn induced significant increase in the apparent quantum yield (ɸ) and light compensation point (LCP). Interestingly, intracellular CO2 (Ci) remains stable under Mn stress. Concomitantly, leaf membrane lipids have drastically reduced under high Mn concentration. After Mn exposition, leaf fatty acids exhibited a significant loss of linolenic acid, accompanied by an accumulation of palmitoleic, stearic, and linoleic acids leading to alteration of lipid desaturation. NO supply reversed Mn toxicity as evidenced by enhancement of growth biomass and recovery of Amax, E, ɸ, and LCP. Similarly, NO addition has positive effects on leaf lipid content and composition leading to restoration of lipid unsaturation. The modulation of fatty acid composition can be a way to reduce leaf membrane damages and maintain optimal photosynthesis and plant growth. Despite the absence of enough evidences in how NO is involved in lipid and photosynthesis recovery under Mn stress conditions, it is assumed that NO beneficial effects are attributable to NO/Mn cross-talk.


Asunto(s)
Fabaceae , Manganeso , Lípidos , Manganeso/toxicidad , Óxido Nítrico , Fotosíntesis , Hojas de la Planta , Plantas
3.
Plant Physiol ; 173(1): 434-455, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27852950

RESUMEN

Plant mutants for genes encoding subunits of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis (Arabidopsis thaliana) CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit and the previously characterized ndufs4 CI mutant. In the long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Columbia-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher alternative oxidase content/activity, and displayed a growth retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than in ndufs8.1 ndufs8.2 under the short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD compared with the wild type. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the wild type. The typical LD acclimation of carbon and nitrogen assimilation as well as redox-related parameters was not observed in ndufs8.1 ndufs8 Similarly, NAD(H) content, which was higher in the SD condition in both mutants than in Columbia-0, did not adjust under LD We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of CI mutants and photoperiod acclimation in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Complejo I de Transporte de Electrón/genética , Fotoperiodo , Antioxidantes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Nitrógeno/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
4.
Plant Sci ; 205-206: 20-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23498859

RESUMEN

Photosynthetic responses to persisting mild water stress were compared between the wild type (WT) and the respiratory complex I mutant CMSII of Nicotiana sylvestris. In both genotypes, plants kept at 80% leaf-RWC (WT80 and CMSII80) had lower photosynthetic activity and stomatal/mesophyll conductances compared to well-watered controls. While the stomatal conductance and the chloroplastic CO2 molar ratio were similar in WT80 and CMSII80 leaves, net photosynthesis was higher in CMSII80. Carboxylation efficiency was lowest in WT80 leaves both, on the basis of the same internal and chloroplastic CO2 molar ratio. Photosynthetic and fluorescence parameters indicate that WT80 leaves were only affected in the presence of oxygen. Photorespiration, as estimated by electron flux to oxygen, increased slightly in CMSII80 and WT80 leaves in accordance with increased glycerate contents but maximum photorespiration at low chloroplastic CO2 was markedly lowest in WT80 leaves. This suggests that carbon assimilation of WT80 leaves is impaired by limited photorespiratory activity. The results are discussed with respect to a possible pre-acclimation of complex I deficient leaves in CMSII to drive photosynthesis and photorespiration at low CO2 partial pressure.


Asunto(s)
Dióxido de Carbono/metabolismo , Nicotiana/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Agua/fisiología , Aclimatación , Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Deshidratación , Genotipo , Luz , Mitocondrias/metabolismo , Mutación , Oxígeno/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Estomas de Plantas , Transpiración de Plantas , Nicotiana/genética , Nicotiana/efectos de la radiación
5.
Planta ; 235(3): 603-14, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22002624

RESUMEN

To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.


Asunto(s)
Sequías , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/metabolismo , Nicotiana/metabolismo , Nicotiana/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Ácido Abscísico/metabolismo , Adenosina Trifosfato/metabolismo , Complejo I de Transporte de Electrón/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/genética , Estomas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...