Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
PLoS Pathog ; 20(4): e1011900, 2024 Apr.
Article En | MEDLINE | ID: mdl-38578798

In vivo single-cell approaches have transformed our understanding of the immune populations in tissues. Mass cytometry (CyTOF), that combines the resolution of mass spectrometry with the ability to conduct multiplexed measurements of cell molecules at the single cell resolution, has enabled to resolve the diversity of immune cell subsets, and their heterogeneous functionality. Here we assess the feasibility of taking CyTOF one step further to immuno profile cells while tracking their interactions with bacteria, a method we term Bac-CyTOF. We focus on the pathogen Klebsiella pneumoniae interrogating the pneumonia mouse model. Using Bac-CyTOF, we unveil the atlas of immune cells of mice infected with a K. pneumoniae hypervirulent strain. The atlas is characterized by a decrease in the populations of alveolar and monocyte-derived macrophages. Conversely, neutrophils, and inflammatory monocytes are characterized by an increase in the subpopulations expressing markers of less active cells such as the immune checkpoint PD-L1. These are the cells infected. We show that the type VI secretion system (T6SS) contributes to shape the lung immune landscape. The T6SS governs the interaction with monocytes/macrophages by shifting Klebsiella from alveolar macrophages to interstitial macrophages and limiting the infection of inflammatory monocytes. The lack of T6SS results in an increase of cells expressing markers of active cells, and a decrease in the subpopulations expressing PD-L1. By probing Klebsiella, and Acinetobacter baumannii strains with limited ability to survive in vivo, we uncover that a heightened recruitment of neutrophils, and relative high levels of alveolar macrophages and eosinophils and the recruitment of a characteristic subpopulation of neutrophils are features of mice clearing infections. We leverage Bac-CyTOF-generated knowledge platform to investigate the role of the DNA sensor STING in Klebsiella infections. sting-/- infected mice present features consistent with clearing the infection including the reduced levels of PD-L1. STING absence facilitates Klebsiella clearance.


Klebsiella Infections , Klebsiella pneumoniae , Mice , Animals , Klebsiella pneumoniae/genetics , B7-H1 Antigen , Macrophages, Alveolar , Lung , Macrophages , Klebsiella Infections/microbiology
2.
Cell Rep ; 42(4): 112341, 2023 04 25.
Article En | MEDLINE | ID: mdl-37018072

PYHIN proteins AIM2 and IFI204 sense pathogen DNA, while other PYHINs have been shown to regulate host gene expression through as-yet unclear mechanisms. We characterize mouse PYHIN IFI207, which we find is not involved in DNA sensing but rather is required for cytokine promoter induction in macrophages. IFI207 co-localizes with both active RNA polymerase II (RNA Pol II) and IRF7 in the nucleus and enhances IRF7-dependent gene promoter induction. Generation of Ifi207-/- mice shows no role for IFI207 in autoimmunity. Rather, IFI207 is required for the establishment of a Klebsiella pneumoniae lung infection and for Klebsiella macrophage phagocytosis. These insights into IFI207 function illustrate that PYHINs can have distinct roles in innate immunity independent of DNA sensing and highlight the need to better characterize the whole mouse locus, one gene at a time.


Cytokines , Klebsiella pneumoniae , Mice , Animals , Klebsiella pneumoniae/genetics , Nuclear Proteins/metabolism , Immunity, Innate , DNA
3.
Adv Exp Med Biol ; 1406: 19-39, 2023.
Article En | MEDLINE | ID: mdl-37016109

The core of biomedical science is the use of laboratory techniques to support the diagnosis and treatment of disease in clinical settings. Despite tremendous advancement in our understanding of medicine in recent years, we are still far from having a complete understanding of human physiology in homeostasis, let alone the pathology of disease states. Indeed medical advances over the last two hundred years would not have been possible without the invention of and continuous development of visualisation techniques available to research scientists and clinicians. As we have all learned from the recent COVID pandemic, despite advances in modern medicine we still have much to learn regarding infection biology. Indeed antimicrobial resistant (AMR) bacteria are a global threat to human health, meaning research into bacterial pathogenesis is vital. In this chapter, we will briefly describe the nature of microbes and host immune responses before delving into some of the visualisation techniques utilised in the field of biomedical research with a focus on host-pathogen interactions. We will give a brief overview of commonly used techniques from gold standard staining methods, in situ hybridisation, microscopy, western blotting, microbial characterisation, to cutting-edge image flow cytometry and mass spectrometry. Specifically, we will focus on techniques utilised to visualise interactions between the host, our own bodies, and invading organisms including bacteria. We will touch on in vitro and ex vivo modelling methodology with examples utilised to delineate pathogenicity in disease. A better understanding of bacterial biology, immunology and how these fields interact (host-pathogen communications) in biomedical research is integral to developing novel therapeutic approaches which circumvent the need for antibiotics, an important issue as we enter a post-antibiotic era.


COVID-19 , Humans , Bacteria , Host-Pathogen Interactions , Anti-Bacterial Agents
4.
Nat Commun ; 14(1): 871, 2023 02 16.
Article En | MEDLINE | ID: mdl-36797302

Bacteria can inhibit the growth of other bacteria by injecting effectors using a type VI secretion system (T6SS). T6SS effectors can also be injected into eukaryotic cells to facilitate bacterial survival, often by targeting the cytoskeleton. Here, we show that the trans-kingdom antimicrobial T6SS effector VgrG4 from Klebsiella pneumoniae triggers the fragmentation of the mitochondrial network. VgrG4 colocalizes with the endoplasmic reticulum (ER) protein mitofusin 2. VgrG4 induces the transfer of Ca2+ from the ER to the mitochondria, activating Drp1 (a regulator of mitochondrial fission) thus leading to mitochondrial network fragmentation. Ca2+ elevation also induces the activation of the innate immunity receptor NLRX1 to produce reactive oxygen species (ROS). NLRX1-induced ROS limits NF-κB activation by modulating the degradation of the NF-κB inhibitor IκBα. The degradation of IκBα is triggered by the ubiquitin ligase SCFß-TrCP, which requires the modification of the cullin-1 subunit by NEDD8. VgrG4 abrogates the NEDDylation of cullin-1 by inactivation of Ubc12, the NEDD8-conjugating enzyme. Our work provides an example of T6SS manipulation of eukaryotic cells via alteration of the mitochondria.


Cullin Proteins , NF-kappa B , Cullin Proteins/metabolism , NF-KappaB Inhibitor alpha , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Immunity, Innate
5.
mBio ; 14(1): e0312122, 2023 02 28.
Article En | MEDLINE | ID: mdl-36598189

Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection. K. pneumoniae colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of K. pneumoniae colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of K. pneumoniae without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic K. pneumoniae strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of K. pneumoniae and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract. IMPORTANCE Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. Klebsiella colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing Klebsiella infections. Current research models rely on the perturbation of the gut microbiome by antibiotics, resulting in an invasive infection. Here, we report a new model of K. pneumoniae gut colonization that recapitulates key features of the asymptomatic human gastrointestinal tract colonization. In our model, there is no need to disturb the microbiota to achieve stable colonization, and there is no dissemination to other tissues. Our model sums up the clinical scenario in which antibiotic treatment triggers invasive infection. We envision that our model will be an excellent platform upon which to investigate factors enhancing colonization and invasive infections and to test therapeutics to eliminate Klebsiella asymptomatic colonization.


Klebsiella Infections , Klebsiella pneumoniae , Humans , Animals , Mice , Gastrointestinal Tract/pathology , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/epidemiology , Inflammation
6.
EMBO Mol Med ; 14(12): e16888, 2022 12 07.
Article En | MEDLINE | ID: mdl-36337046

The strategies deployed by antibiotic-resistant bacteria to counteract host defences are poorly understood. Here, we elucidate a novel host-pathogen interaction resulting in skewing lung macrophage polarisation by the human pathogen Klebsiella pneumoniae. We identify interstitial macrophages (IMs) as the main population of lung macrophages associated with Klebsiella. Single-cell transcriptomics and trajectory analysis of cells reveal type I IFN and IL10 signalling, and macrophage polarisation are characteristic of infected IMs, whereas Toll-like receptor (TLR) and Nod-like receptor signalling are features of infected alveolar macrophages. Klebsiella-induced macrophage polarisation is a singular M2-type we termed M(Kp). To rewire macrophages, Klebsiella hijacks a TLR-type I IFN-IL10-STAT6 axis. Absence of STAT6 limits Klebsiella intracellular survival and facilitates the clearance of the pathogen in vivo. Glycolysis characterises M(Kp) metabolism, and inhibition of glycolysis results in clearance of intracellular Klebsiella. Capsule polysaccharide governs M(Kp). Klebsiella also skews human macrophage polarisation towards M(Kp) in a type I IFN-IL10-STAT6-dependent manner. Klebsiella induction of M(Kp) represents a novel strategy to overcome host restriction, and identifies STAT6 as target to boost defences against Klebsiella.


Klebsiella pneumoniae , Macrophages, Alveolar , Humans , Lung
7.
J Cell Sci ; 135(16)2022 08 15.
Article En | MEDLINE | ID: mdl-35979931

Two years into the most significant infectious disease event of our generation, infections have populated every conversation and in-depth understanding of host-pathogen interactions has, perhaps, never been more important. In a successful return to in-person conferences, the host-pathogen interface was the focus of the third Cell Dynamics meeting, which took place at the glorious Wotton House in Surrey, UK. The meeting organised by Michaela Gack, Maximiliano Gutierrez, Dominique Soldati-Favre and Michael Way gathered an international group of scientists who shared their recent discoveries and views on numerous aspects, including cell-autonomous defence mechanisms, pathogen interactions with host cytoskeletal or membrane dynamics, and cellular immune regulation. More than 30 years into the beginning of cellular microbiology as a field, the meeting exhibited the unique aspect of the host-pathogen interface in uncovering the fundamentals of both pathogens and their hosts.


Communicable Diseases , Host-Pathogen Interactions , Cytoskeleton , Humans , Membranes
8.
Cell Rep ; 40(6): 111167, 2022 08 09.
Article En | MEDLINE | ID: mdl-35947948

Many bacterial pathogens antagonize host defense responses by translocating effector proteins into cells. It remains an open question how those pathogens not encoding effectors counteract anti-bacterial immunity. Here, we show that Klebsiella pneumoniae exploits the evolutionary conserved innate protein SARM1 to regulate negatively MyD88- and TRIF-governed inflammation, and the activation of the MAP kinases ERK and JNK. SARM1 is required for Klebsiella induction of interleukin-10 (IL-10) by fine-tuning the p38-type I interferon (IFN) axis. SARM1 inhibits the activation of Klebsiella-induced absent in melanoma 2 inflammasome to limit IL-1ß production, suppressing further inflammation. Klebsiella exploits type I IFNs to induce SARM1 in a capsule and lipopolysaccharide O-polysaccharide-dependent manner via the TLR4-TRAM-TRIF-IRF3-IFNAR1 pathway. Absence of SARM1 reduces the intracellular survival of K. pneumoniae in macrophages, whereas sarm1-deficient mice control the infection. Altogether, our results illustrate an anti-immunology strategy deployed by a human pathogen. SARM1 inhibition will show a beneficial effect to treat Klebsiella infections.


Klebsiella Infections , Klebsiella pneumoniae , Adaptor Proteins, Vesicular Transport , Animals , Armadillo Domain Proteins/genetics , Cytoskeletal Proteins , Humans , Inflammation , Mice , Signal Transduction
9.
PLoS One ; 16(4): e0249547, 2021.
Article En | MEDLINE | ID: mdl-33831044

Polymicrobial biofilms consisting of fungi and bacteria are frequently formed on endotracheal tubes and may contribute to development of ventilator associated pneumonia (VAP) in critically ill patients. This study aimed to determine the role of early Candida albicans biofilms in supporting dual-species (dual-kingdom) biofilm formation with respiratory pathogens in vitro, and investigated the effect of targeted antifungal treatment on bacterial cells within the biofilms. Dual-species biofilm formation between C. albicans and three respiratory pathogens commonly associated with VAP (Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus) was studied using quantitative PCR. It was shown that early C. albicans biofilms enhanced the numbers of E. coli and S. aureus (including methicillin resistant S. aureus; MRSA) but not P. aeruginosa within dual-species biofilms. Transwell assays demonstrated that contact with C. albicans was required for the increased bacterial cell numbers observed. Total Internal Reflection Fluorescence microscopy showed that both wild type and hyphal-deficient C. albicans provided a scaffold for initial bacterial adhesion in dual species biofilms. qPCR results suggested that further maturation of the dual-species biofilm significantly increased bacterial cell numbers, except in the case of E.coli with hyphal-deficient C. albicans (Ca_gcn5Δ/Δ). A targeted preventative approach with liposomal amphotericin (AmBisome®) resulted in significantly decreased numbers of S. aureus in dual-species biofilms, as determined by propidium monoazide-modified qPCR. Similar results were observed when dual-species biofilms consisting of clinical isolates of C. albicans and MRSA were treated with liposomal amphotericin. However, reductions in E. coli numbers were not observed following liposomal amphotericin treatment. We conclude that early C. albicans biofilms have a key supporting role in dual-species biofilms by enhancing bacterial cell numbers during biofilm maturation. In the setting of increasing antibiotic resistance, an important and unexpected consequence of antifungal treatment of dual-species biofilms, is the additional benefit of decreased growth of multi-drug resistant bacteria such as MRSA, which could represent a novel future preventive strategy.


Antifungal Agents/pharmacology , Biofilms/growth & development , Candida albicans/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Staphylococcal Infections/drug therapy , Staphylococcus aureus/growth & development , Bacterial Adhesion , Biofilms/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Humans , In Vitro Techniques , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects
10.
mBio ; 11(5)2020 09 29.
Article En | MEDLINE | ID: mdl-32994335

Klebsiella pneumoniae is an important cause of multidrug-resistant infections worldwide. Understanding the virulence mechanisms of K. pneumoniae is a priority and timely to design new therapeutics. Here, we demonstrate that K. pneumoniae limits the SUMOylation of host proteins in epithelial cells and macrophages (mouse and human) to subvert cell innate immunity. Mechanistically, in lung epithelial cells, Klebsiella increases the levels of the deSUMOylase SENP2 in the cytosol by affecting its K48 ubiquitylation and its subsequent degradation by the ubiquitin proteasome. This is dependent on Klebsiella preventing the NEDDylation of the Cullin-1 subunit of the ubiquitin ligase complex E3-SCF-ßTrCP by exploiting the CSN5 deNEDDylase. Klebsiella induces the expression of CSN5 in an epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-extracellular signal-regulated kinase (ERK)-glycogen synthase kinase 3 beta (GSK3ß) signaling pathway-dependent manner. In macrophages, Toll-like receptor 4 (TLR4)-TRAM-TRIF-induced type I interferon (IFN) via IFN receptor 1 (IFNAR1)-controlled signaling mediates Klebsiella-triggered decrease in the levels of SUMOylation via let-7 microRNAs (miRNAs). Our results revealed the crucial role played by Klebsiella polysaccharides, the capsule, and the lipopolysaccharide (LPS) O-polysaccharide, to decrease the levels of SUMO-conjugated proteins in epithelial cells and macrophages. A Klebsiella-induced decrease in SUMOylation promotes infection by limiting the activation of inflammatory responses and increasing intracellular survival in macrophages.IMPORTANCEKlebsiella pneumoniae has been singled out as an urgent threat to human health due to the increasing isolation of strains resistant to "last-line" antimicrobials, narrowing the treatment options against Klebsiella infections. Unfortunately, at present, we cannot identify candidate compounds in late-stage development for treatment of multidrug-resistant Klebsiella infections; this pathogen is exemplary of the mismatch between unmet medical needs and the current antimicrobial research and development pipeline. Furthermore, there is still limited evidence on K. pneumoniae pathogenesis at the molecular and cellular levels in the context of the interactions between bacterial pathogens and their hosts. In this research, we have uncovered a sophisticated strategy employed by Klebsiella to subvert the activation of immune defenses by controlling the modification of proteins. Our research may open opportunities to develop new therapeutics based on counteracting this Klebsiella-controlled immune evasion strategy.


Host-Pathogen Interactions/immunology , Immune Evasion , Immunity, Innate , Klebsiella pneumoniae/immunology , Klebsiella pneumoniae/metabolism , Sumoylation , A549 Cells , Animals , Female , Humans , Interferon Type I/immunology , Klebsiella Infections/microbiology , Lung/microbiology , Macrophages, Alveolar/immunology , Mice , Mice, Inbred C57BL , Signal Transduction/immunology
11.
Infect Immun ; 87(4)2019 04.
Article En | MEDLINE | ID: mdl-30745327

Acinetobacter baumannii causes a wide range of nosocomial infections. This pathogen is considered a threat to human health due to the increasingly frequent isolation of multidrug-resistant strains. There is a major gap in knowledge on the infection biology of A. baumannii, and only a few virulence factors have been characterized, including lipopolysaccharide. The lipid A expressed by A. baumannii is hepta-acylated and contains 2-hydroxylaurate. The late acyltransferases controlling the acylation of lipid A have been already characterized. Here, we report the characterization of A. baumannii LpxO, which encodes the enzyme responsible for the 2-hydroxylation of lipid A. By genetic methods and mass spectrometry, we demonstrate that LpxO catalyzes the 2-hydroxylation of the laurate transferred by A. baumannii LpxL. LpxO-dependent lipid A 2-hydroxylation protects A. baumannii from polymyxin B, colistin, and human ß-defensin 3. LpxO contributes to the survival of A. baumannii in human whole blood and is required for pathogen survival in the waxmoth Galleria mellonella LpxO also protects Acinetobacter from G. mellonella antimicrobial peptides and limits their expression. Further demonstrating the importance of LpxO-dependent modification in immune evasion, 2-hydroxylation of lipid A limits the activation of the mitogen-activated protein kinase Jun N-terminal protein kinase to attenuate inflammatory responses. In addition, LpxO-controlled lipid A modification mediates the production of the anti-inflammatory cytokine interleukin-10 (IL-10) via the activation of the transcriptional factor CREB. IL-10 in turn limits the production of inflammatory cytokines following A. baumannii infection. Altogether, our studies suggest that LpxO is a candidate for the development of anti-A. baumannii drugs.


Acinetobacter Infections/microbiology , Acinetobacter baumannii/metabolism , Acinetobacter baumannii/pathogenicity , Lipid A/metabolism , Acinetobacter baumannii/genetics , Acinetobacter baumannii/growth & development , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Hydroxylation , Larva/microbiology , Lipid A/chemistry , Male , Mice , Mice, Inbred C57BL , Moths/microbiology , Virulence
12.
Fungal Genet Biol ; 122: 1-10, 2019 01.
Article En | MEDLINE | ID: mdl-30339831

Organic acids are recognized as one of the most prevalent compounds in ecosystems, thus the transport and assimilation of these molecules represent an adaptive advantage for organisms. The AceTr family members are associated with the active transport of organic acids, namely acetate and succinate. The phylogenetic analysis shows this family is dispersed in the tree of life. However, in eukaryotes, it is almost limited to microbes, though reaching a prevalence close to 100% in fungi, with an essential role in spore development. Aiming at deepening the knowledge in this family, we studied the acetate permease AceP from Methanosarcina acetivorans, as the first functionally characterized archaeal member of this family. Furthermore, we demonstrate that the yeast Gpr1 from Yarrowia lipolytica is an acetate permease, whereas the Ady2 closest homologue in Saccharomyces cerevisiae, Fun34, has no role in acetate uptake. In this work, we describe the functional role of the AceTr conserved motif NPAPLGL(M/S). We further unveiled the role of the amino acid residues R122 and Q125 of SatP as essential for protein activity.


Biological Transport/genetics , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Methanosarcina/enzymology , Acetic Acid/chemistry , Acetic Acid/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Membrane Proteins/chemistry , Membrane Transport Proteins/chemistry , Methanosarcina/genetics , Phylogeny , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Succinic Acid/chemistry , Succinic Acid/metabolism , Yarrowia/genetics
13.
FEMS Microbiol Rev ; 43(2): 123-144, 2019 03 01.
Article En | MEDLINE | ID: mdl-30452654

Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an 'urgent threat to human health' by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.


Host-Pathogen Interactions/immunology , Immune Evasion/immunology , Klebsiella Infections/immunology , Klebsiella pneumoniae/immunology , Humans , Klebsiella Infections/microbiology
14.
Microbiology (Reading) ; 165(2): 138-145, 2019 02.
Article En | MEDLINE | ID: mdl-30520711

The fifth Young Microbiologists Symposium was held in Queen's University Belfast, Northern Ireland, in late August 2018. The symposium, focused on 'Microbe signalling, organization and pathogenesis', attracted 121 microbiologists from 15 countries. The meeting allowed junior scientists to present their work to a broad audience, and was supported by the European Molecular Biology Organization, the Federation of European Microbiological Societies, the Society of Applied Microbiology, the Biochemical Society and the Microbiology Society. Sessions covered recent advances in areas of microbiology including gene regulation and signalling, secretion and transport across membranes, infection and immunity, and antibiotics and resistance mechanisms. In this Meeting Report, we highlight some of the most significant advances and exciting developments communicated during talks and poster presentations.


Bacteria/metabolism , Bacteria/pathogenicity , Signal Transduction , Animals , Bacteria/genetics , Bacteria/immunology , Bacterial Secretion Systems , Biofilms/growth & development , Drug Resistance, Microbial , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions/immunology , Humans , Microbiology/organization & administration , Microbiology/trends , Signal Transduction/genetics , Signal Transduction/immunology
15.
EMBO Mol Med ; 9(4): 430-447, 2017 04.
Article En | MEDLINE | ID: mdl-28202493

Klebsiella pneumoniae is an important cause of multidrug-resistant infections worldwide. Recent studies highlight the emergence of multidrug-resistant K. pneumoniae strains which show resistance to colistin, a last-line antibiotic, arising from mutational inactivation of the mgrB regulatory gene. However, the precise molecular resistance mechanisms of mgrB-associated colistin resistance and its impact on virulence remain unclear. Here, we constructed an mgrB gene K. pneumoniae mutant and performed characterisation of its lipid A structure, polymyxin and antimicrobial peptide resistance, virulence and inflammatory responses upon infection. Our data reveal that mgrB mutation induces PhoPQ-governed lipid A remodelling which confers not only resistance to polymyxins, but also enhances K. pneumoniae virulence by decreasing antimicrobial peptide susceptibility and attenuating early host defence response activation. Overall, our findings have important implications for patient management and antimicrobial stewardship, while also stressing antibiotic resistance development is not inexorably linked with subdued bacterial fitness and virulence.


Drug Resistance, Bacterial , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Load , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Colistin/pharmacology , Disease Models, Animal , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/pathology , Lepidoptera , Lipid A/chemistry , Lung/microbiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Polymyxins/pharmacology , Survival Analysis , Virulence
16.
FEMS Yeast Res ; 17(2)2017 03 01.
Article En | MEDLINE | ID: mdl-28087674

Sugar acids can be used as platform chemicals to generate primary building blocks of industrially relevant products. Microbial production of these organic compounds at high yields requires the engineering of the enzymatic machinery and the presence of plasma membrane transporters able to export them outside the cells. In this study, several yeast carboxylic acid transporters belonging to the Jen family were screened for the transport of biotechnologically relevant sugar acids, namely gluconic, saccharic, mucic, xylaric and xylonic acid, and functionally characterised in Saccharomyces cerevisiae. We show that Jen permeases are capable of transporting most of these sugar acids, although with different specificities. Saccharate is a substrate of the transporters ScJen1-S271Q and KlJen2, gluconate of CaJen2 and KlJen2, and xylarate and mucate of CaJen2. A molecular docking approach of these transporters identified the residues that play a major role in the substrate binding of these sugar acids, namely R188 (ScJen1), R122 (CaJen2) and R127 (KlJen2), all equivalent residues (TMS II). The identification of Jen members as sugar acid transporters can contribute to engineering efficient microbial cell factories with increased sugar acid production, as the ScJen1 is able to promote substrate efflux.


Membrane Transport Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Sugar Acids/metabolism , Molecular Docking Simulation , Protein Binding , Substrate Specificity
17.
Fungal Genet Biol ; 76: 93-103, 2015 Mar.
Article En | MEDLINE | ID: mdl-25708319

AcpA has been previously characterized as a high-affinity transporter essential for the uptake and use of acetate as sole carbon source in Aspergillus nidulans. Here, we follow the expression profile of AcpA and define its substrate specificity. AcpA-mediated acetate transport is detected from the onset of conidiospore germination, peaks at the time of germ tube emergence, and drops to low basal levels in germlings and young mycelia, where a second acetate transporter is also becoming apparent. AcpA activity also responds to acetate presence in the growth medium, but is not subject to either carbon or nitrogen catabolite repression. Short-chain monocarboxylates (benzoate, formate, butyrate and propionate) inhibit AcpA-mediated acetate transport with apparent inhibition constants (Ki) of 16.89±2.12, 9.25±1.01, 12.06±3.29 and 1.44±0.13mM, respectively. AcpA is also shown not to be directly involved in ammonia export, as proposed for its Saccharomyces cerevisiae homologue Ady2p. In the second part of this work, we search for the unknown acetate transporter expressed in mycelia, and for other transporters that might contribute to acetate uptake. In silico analysis, genetic construction of relevant null mutants, and uptake assays, reveal that the closest AcpA homologue (AN1839), named AcpB, is the 'missing' secondary acetate transporter in mycelia. We also identify two major short-chain carboxylate (lactate, succinate, pyruvate and malate) transporters, named JenA (AN6095) and JenB (AN6703), which however are not involved in acetate uptake. This work establishes a framework for further exploiting acetate and carboxylate transport in filamentous ascomycetes.


Acetates/metabolism , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Gene Expression Regulation, Fungal , Ammonium Compounds/metabolism , Aspergillus nidulans/cytology , Mycelium/metabolism , Substrate Specificity
18.
Biochem J ; 454(3): 585-95, 2013 Sep 15.
Article En | MEDLINE | ID: mdl-23844911

In the present paper we describe a new carboxylic acid transporter in Escherichia coli encoded by the gene yaaH. In contrast to what had been described for other YaaH family members, the E. coli transporter is highly specific for acetic acid (a monocarboxylate) and for succinic acid (a dicarboxylate), with affinity constants at pH 6.0 of 1.24±0.13 mM for acetic acid and 1.18±0.10 mM for succinic acid. In glucose-grown cells the ΔyaaH mutant is compromised for the uptake of both labelled acetic and succinic acids. YaaH, together with ActP, described previously as an acetate transporter, affect the use of acetic acid as sole carbon and energy source. Both genes have to be deleted simultaneously to abolish acetate transport. The uptake of acetate and succinate was restored when yaaH was expressed in trans in ΔyaaH ΔactP cells. We also demonstrate the critical role of YaaH amino acid residues Leu¹³¹ and Ala¹64 on the enhanced ability to transport lactate. Owing to its functional role in acetate and succinate uptake we propose its assignment as SatP: the Succinate-Acetate Transporter Protein.


Acetic Acid/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Monocarboxylic Acid Transporters/genetics , Organic Anion Transporters/genetics , Succinic Acid/metabolism , Amino Acid Sequence , Amino Acid Substitution , Biological Transport , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Gene Knockout Techniques , Kinetics , Molecular Sequence Annotation , Molecular Sequence Data , Monocarboxylic Acid Transporters/metabolism , Mutagenesis, Site-Directed , Organic Anion Transporters/metabolism , Substrate Specificity
19.
FEMS Yeast Res ; 12(3): 375-81, 2012 May.
Article En | MEDLINE | ID: mdl-22260735

We aimed to manipulate the metabolism of Saccharomyces cerevisiae to produce lactic acid and search for the potential influence of acid transport across the plasma membrane in this process. Saccharomyces cerevisiae W303-1A is able to use l-lactic acid but its production in our laboratory has not previously been detected. When the l-LDH gene from Lactobacillus casei was expressed in S. cerevisiae W303-1A and in the isogenic mutants jen1∆, ady2∆ and jen1∆ ady2∆, all strains were able to produce lactic acid, but higher titres were achieved in the mutant strains. In strains constitutively expressing both LDH and JEN1 or ADY2, a higher external lactic acid concentration was found when glucose was present in the medium, but when glucose was exhausted, its consumption was more pronounced. These results demonstrate that expression of monocarboxylate permeases influences lactic acid production. Ady2 has been previously characterized as an acetate permease but our results demonstrated its additional role in lactate uptake. Overall, we demonstrate that monocarboxylate transporters Jen1 and Ady2 are modulators of lactic acid production and may well be used to manipulate lactic acid export in yeast cells.


Gene Expression Regulation, Fungal , Lactic Acid/biosynthesis , Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Symporters/metabolism , Cell Membrane/metabolism , Genetic Engineering/methods , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Lacticaseibacillus casei/enzymology , Lacticaseibacillus casei/genetics , Membrane Transport Proteins/genetics , Monocarboxylic Acid Transporters/genetics , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Symporters/genetics
20.
Mol Microbiol ; 81(3): 805-17, 2011 Aug.
Article En | MEDLINE | ID: mdl-21651629

Previous mutational analysis of Jen1p, a Saccharomyces cerevisiae monocarboxylate/H⁺ symporter of the Major Facilitator Superfamily, has suggested that the consensus sequence ³79NXX[S/T]HX[S/T]QD³87 in transmembrane segment VII (TMS-VII) is part of the substrate translocation pathway. Here, we rationally design, analyse and show that several novel mutations in TMS-V and TMS-XI directly modify Jen1p function. Among the residues studied, F270 (TMS-V) and Q498 (TMS-XI) are critical specificity determinants for the distinction of mono- from dicarboxylates, and N501 (TMS-XI) is a critical residue for function. Using a model created on the basis of Jen1p similarity with the GlpT permease, we show that all polar residues critical for function within TMS-VII and TMS-XI (N379, H383, D387, Q498, N501) are perfectly aligned in an imaginary axis that lies parallel to the protein pore. This model and subsequent mutational analysis further reveal that an additional polar residue facing the pore, R188 (TMS-II), is irreplaceable for function. Our model also justifies the role of F270 and Q498 in substrate specificity. Finally, docking calculations reveal a 'trajectory-like' substrate displacement within the Jen1p pore, where R188 plays a major dynamic role mediating the orderly relocation of the substrate by subsequent H-bond interactions involving itself and residues H383, N501 and Q498.


Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Symporters/genetics , Symporters/metabolism , Amino Acid Sequence , Amino Acid Substitution/genetics , Cytoplasm , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Monocarboxylic Acid Transporters/chemistry , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Sequence Alignment , Substrate Specificity , Symporters/chemistry
...