Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Adv Mater ; 36(16): e2310499, 2024 Apr.
Article En | MEDLINE | ID: mdl-38100276

Today, ≈20% of the electric consumption is devoted to refrigeration; while, ≈50% of the final energy is dedicated to heating applications. In this scenario, many cooling devices and heat-pumps are transitioning toward the use of CO2 as an eco-friendly refrigerant, favoring carbon circular economy. Nevertheless, CO2 still has some limitations, such as large operating pressures (70-150 bar) and a critical point at 31 °C, which compromises efficiency and increases technological complexity. Very recently, an innovative breathing-caloric mechanism in the MIL-53(Al) compound is reported, which implies gas adsorption under CO2 pressurization boosted by structural transitions and which overcomes the limitations of stand-alone CO2. Here, the breathing-caloric-like effects of MOF-508b are reported, surpassing by 40% those of MIL-53(Al). Moreover, the first thermometry device operating at room temperature and under the application of only 26 bar of CO2 is presented. Under those conditions, this material presents values of ΔT ≈ 30 K, reaching heating temperatures of 56 °C and cooling temperatures of -10 °C, which are already useful for space heating, air-conditioning, food refrigeration, and freezing applications.

2.
J Phys Chem C Nanomater Interfaces ; 127(6): 3330-3338, 2023 Feb 16.
Article En | MEDLINE | ID: mdl-36846095

A plethora of temperature-induced phase transitions have been observed in (CH3NH3)[M(HCOO)3] compounds, where M is Co(II) or Ni(II). Among them, the nickel compound exhibits a combination of magnetic and nuclear incommensurability below Néel temperature. Despite the fact that the zero-field behavior has been previously addressed, here we study in depth the macroscopic magnetic behavior of this compound to unveil the origin of the atypical magnetic response found in it and in its parent family of formate perovskites. In particular, they show a puzzling magnetization reversal in the curves measured starting from low temperatures, after cooling under zero field. The first atypical phenomenon is the impossibility of reaching zero magnetization, even by nullifying the applied external field and even compensating it for the influence of the Earth's magnetic field. Relatively large magnetic fields are needed to switch the magnetization from negative to positive values or vice versa, which is compatible with a soft ferromagnetic system. The atypical path found in its first magnetization curve and hysteresis loop at low temperatures is the most noticeable feature. The magnetization curve switches from more than 1200 Oe from the first magnetization loop to the subsequent magnetization loops. A feature that cannot be explained using a model based on unbalanced pair of domains. As a result, we decipher this behavior in light of the incommensurate structure of this material. We propose, in particular, that the applied magnetic field induces a magnetic phase transition from a magnetically incommensurate structure to a magnetically modulated collinear structure.

3.
iScience ; 25(6): 104450, 2022 Jun 17.
Article En | MEDLINE | ID: mdl-35677647

A detailed study of lead halide-layered perovskites with general formula A2PbX4 (where A is cyclohexylammonium (CHA) or cyclopentylammonium (CPA) cation and X is Cl- or Br- anion) is presented. Using variable temperature synchrotron X-ray powder diffraction, we observe that these compounds exhibit diverse crystal structures above room temperature. Very interestingly, we report some unconventional thermomechanical responses such as uniaxial negative thermal expansion and colossal positive thermal expansion in a perpendicular direction. For the polymorphs of (CHA)2PbBr4, the volumetric thermal expansion coefficient is among the highest reported for any extended inorganic crystalline solid, reaching 480 MK-1. The phase transitions are confirmed by calorimetry and dielectric measurements, where the dielectric versus temperature curves show anomalies related with the order-disorder phase transitions. In addition, these compounds exhibit a broad photoluminescence (PL) emission with a large Stokes shift, which is related with an exciton PL emission.

4.
Chem Mater ; 34(7): 3323-3332, 2022 Apr 12.
Article En | MEDLINE | ID: mdl-35444364

In this work, "breathing-caloric" effect is introduced as a new term to define very large thermal changes that arise from the combination of structural changes and gas adsorption processes occurring during breathing transitions. In regard to cooling and heating applications, this innovative caloric effect appears under very low working pressures and in a wide operating temperature range. This phenomenon, whose origin is analyzed in depth, is observed and reported here for the first time in the porous hybrid organic-inorganic MIL-53(Al) material. This MOF compound exhibits colossal thermal changes of ΔS ∼ 311 J K-1 kg-1 and ΔH ∼ 93 kJ kg-1 at room temperature (298 K) and under only 16 bar, pressure which is similar to that of common gas refrigerants at the same operating temperature (for instance, p(CO2) ∼ 64 bar and p(R134a) ∼ 6 bar) and noticeably lower than p > 1000 bar of most solid barocaloric materials. Furthermore, MIL-53(Al) can operate in a very wide temperature range from 333 K down to 254 K, matching the operating requirements of most HVAC systems. Therefore, these findings offer new eco-friendly alternatives to the current refrigeration systems that can be easily adapted to existing technologies and open the door to the innovation of future cooling systems yet to be developed.

5.
Molecules ; 25(20)2020 Oct 16.
Article En | MEDLINE | ID: mdl-33081238

Temperature-dependent Raman scattering and differential scanning calorimetry were applied to the study of the hybrid organic-inorganic azide-perovskite [(CH3)4N][Cd(N3)3], a compound with multiple structural phase transitions as a function of temperature. A significant entropy variation was observed associated to such phase transitions, |∆S| ~ 62.09 J·kg-1 K-1, together with both a positive high barocaloric (BC) coefficient |δTt/δP| ~ 12.39 K kbar-1 and an inverse barocaloric (BC) coefficient |δTt/δP| ~ -6.52 kbar-1, features that render this compound interesting for barocaloric applications. As for the obtained Raman spectra, they revealed that molecular vibrations associated to the NC4, N3- and CH3 molecular groups exhibit clear anomalies during the phase transitions, which include splits and discontinuity in the phonon wavenumber and lifetime. Furthermore, variation of the TMA+ and N3- modes with temperature revealed that while some modes follow the conventional red shift upon heating, others exhibit an unconventional blue shift, a result which was related to the weakening of the intermolecular interactions between the TMA (tetramethylammonium) cations and the azide ligands and the concomitant strengthening of the intramolecular bondings. Therefore, these studies show that Raman spectroscopy is a powerful tool to gain information about phase transitions, structures and intermolecular interactions between the A-cation and the framework, even in complex hybrid organic-inorganic perovskites with highly disordered phases.


Azides/chemistry , Calcium Compounds/chemistry , Calorimetry, Differential Scanning/methods , Oxides/chemistry , Spectrum Analysis, Raman/methods , Titanium/chemistry , Cadmium/chemistry , Cations/chemistry , Phase Transition , Temperature , Vibration
6.
Inorg Chem ; 57(13): 7655-7664, 2018 Jul 02.
Article En | MEDLINE | ID: mdl-29894172

We present a novel family of polyhalide salts of Bi(III) with the general formula [Dim]2[Bi2X10], where Dim2+ is the diimidazolium cation (C9H14N4)2+ and X is Cl-, Br-, or I-. Single-phase materials are easily obtained by means of a mild solution chemistry method performed at room temperature. This [Dim]2[Bi2X10] family exhibits a crystal structure based on halobismuthate [Bi2X10]4- dimers, built by distorted {BiX6} octahedra interconnected by edge sharing, and sandwiched between two diimidazolium cations. The optical band gaps displayed by these materials (1.9-3.2 eV) allow their classification as semiconductors. Additionally, the three halides display photoluminescence with emission in the visible range. The behavior of [Dim]2[Bi2I10] is particularly interesting, as it shows an optical band gap of 1.9 eV, a broad band photoluminescence emission, and a relatively long emission lifetime of 190 ns. Moreover, the iodide and bromide compounds also exhibit a reversible solid state thermochromism, being the first example of a bromobismuthate with this property. The diimidazolium cations play an important structural role by stabilizing the crystal structure and balancing the charges of the [Bi2X10]4- dimers. Furthermore, density functional theory calculations suggest that they play a key role in the thermochromic behavior. Therefore, compounds [Dim]2[Bi2X10] (X = Cl-, Br-, or I-) represent a very versatile family in which the optical band gap can be tuned by changing the halide or temperature. This makes them promising new materials for different optoelectronic applications, in particular for obtaining new solar absorbers.

7.
Inorg Chem ; 57(6): 3215-3222, 2018 Mar 19.
Article En | MEDLINE | ID: mdl-29509008

We have prepared two new lead halides with the novel general formula of DMA7Pb4X15 (DMA = [(CH3)2NH2]+ and X = Cl- or Br-) by using an easy route under mild conditions at room temperature. These compounds exhibit an unprecedented crystal structure, are formed by layers of distorted [PbX6] octahedra, which share corners and faces, and contain intercalated DMA cations. Very interestingly, they display dielectric transitions, which are related to a partial order-disorder process of the DMA cations between 160 and 260 K. Additionally, these new layered hybrids exhibit a broadband photoluminiscent emission, which is related to the structural distortions of the [PbX6] octahedra. These findings not only open up large possibilities for future optoelectronic applications of these materials, but they also offer a novel playground for an easy modulation of electrical and optical properties of hybrid organic-inorganic materials. We anticipate that this novel A7Pb4X15 formula can be adequate to tune the family of the hybrid lead halides using other alkylammonium cations, such as methylammonium, formamidinium, or ethylammonium, to improve their photoelectronic properties.

9.
Nat Commun ; 8: 15715, 2017 06 01.
Article En | MEDLINE | ID: mdl-28569842

The fast growing family of organic-inorganic hybrid compounds has recently been attracting increased attention owing to the remarkable functional properties (magnetic, multiferroic, optoelectronic, photovoltaic) displayed by some of its members. Here we show that these compounds can also have great potential in the until now unexplored field of solid-state cooling by presenting giant barocaloric effects near room temperature already under easily accessible pressures in the hybrid perovskite [TPrA][Mn(dca)3] (TPrA: tetrapropylammonium, dca: dicyanamide). Moreover, we propose that this will not be an isolated example for such an extraordinary behaviour as many other organic-inorganic hybrids (metal-organic frameworks and coordination polymers) exhibit the basic ingredients to display large caloric effects which can be very sensitive to pressure and other external stimuli. These findings open up new horizons and great opportunities for both organic-inorganic hybrids and for solid-state cooling technologies.

10.
Chemistry ; 22(23): 7863-70, 2016 06 01.
Article En | MEDLINE | ID: mdl-27072487

The perovskite azido compound [(CH3 )4 N][Mn(N3 )3 ], which undergoes a first-order phase change at Tt =310 K with an associated magnetic bistability, was revisited in the search for additional ferroic orders. The driving force for such structural transition is multifold and involves a peculiar cooperative rotation of the [MnN6 ] octahedral as well as order/disorder and off-center shifts of the [(CH3 )4 N](+) cations and bridging azide ligands, which also bend and change their coordination mode. According to DFT calculations the latter two give rise to the appearance of electric dipoles in the low-temperature (LT) polymorph, the polarization of which nevertheless cancels out due to their antiparallel alignment in the crystal. The conversion of this antiferroelectric phase to the paraelectric phase could be responsible for the experimental dielectric anomaly detected at 310 K. Additionally, the structural change involves a ferroelastic phase transition, whereby the LT polymorph exhibits an unusual and anisotropic thermal behavior. Hence, [(CH3 )4 N][Mn(N3 )3 ] is a singular material in which three ferroic orders coexist even above room temperature.

11.
J Am Chem Soc ; 138(4): 1122-5, 2016 Feb 03.
Article En | MEDLINE | ID: mdl-26717023

We present the first example of magnetic ordering-induced multiferroic behavior in a metal-organic framework magnet. This compound is [CH3NH3][Co(HCOO)3] with a perovskite-like structure. The A-site [CH3NH3](+) cation strongly distorts the framework, allowing anisotropic magnetic and electric behavior and coupling between them to occur. This material is a spin canted antiferromagnet below 15.9 K with a weak ferromagnetic component attributable to Dzyaloshinskii-Moriya (DM) interactions and experiences a discontinuous hysteretic magnetic-field-induced switching along [010] and a more continuous hysteresis along [101]. Coupling between the magnetic and electric order is resolved when the field is applied along this [101]: a spin rearrangement occurs at a critical magnetic field in the ac plane that induces a change in the electric polarization along [101] and [10-1]. The electric polarization exhibits an unusual memory effect, as it remembers the direction of the previous two magnetic-field pulses applied. The data are consistent with an inverse-DM mechanism for multiferroic behavior.

12.
Inorg Chem ; 54(24): 11680-7, 2015 Dec 21.
Article En | MEDLINE | ID: mdl-26652059

A multistimuli response to temperature and pressure is found in the hybrid inorganic-organic perovskite-like [TPrA][Mn(dca)3] compound, which is related to a first-order structural phase transition near room temperature, Tt ≈ 330 K. This phase transition involves a transformation from room temperature polymorph I, with the noncentrosymmetric space group P4̅21c, to the high temperature polymorph II, with the centrosymmetric space group I4/mcm, and it implies ionic displacements, order-disorder phenomena, and a large and anisotropic thermal expansion (specially along the c-axis). As a consequence, [TPrA][Mn(dca)3] exhibits a dielectric anomaly, associated with the change from a cooperative to a noncooperative electric behavior (antiferroelectric (AFE)-paraelectric (PE) transition). The former implies an AFE distribution of electric dipoles in polymorph I, related to the described off-shift of the apolar TPrA cations and the order-disorder of the polar dca ligands mechanisms, that are different from those reported, up to now, for others perovskite-type hybrid compounds. Such cooperative electric order, below Tt ≈ 330 K, coexisting with long-range antiferromagnetic ordering below T = 2.1 K render the [TPrA][Mn(dca)3] a new type-I multiferroic material. In addition, the obtained experimental results reveal that this compound is also a multistimuli-responsive material, with a very large sensitivity toward temperature and applied external pressure, δTt/δP ≈ 24 K kbar(-1), even for small values of pressure (P < 2 kbar). Therefore, this material opens up a potential interest for future technological applications, such as temperature/pressure sensing.

...