Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Commun Biol ; 7(1): 598, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762691

Many songbirds learn to produce songs through vocal practice in early life and continue to sing daily throughout their lifetime. While it is well-known that adult songbirds sing as part of their mating rituals, the functions of singing behavior outside of reproductive contexts remain unclear. Here, we investigated this issue in adult male zebra finches by suppressing their daily singing for two weeks and examining the effects on song performance. We found that singing suppression decreased the pitch, amplitude, and duration of songs, and that those song features substantially recovered through subsequent free singing. These reversible song changes were not dependent on auditory feedback or the age of the birds, contrasting with the adult song plasticity that has been reported previously. These results demonstrate that adult song structure is not stable without daily singing, and suggest that adult songbirds maintain song performance by preventing song changes through physical act of daily singing throughout their life. Such daily singing likely functions as vocal training to maintain the song production system in optimal conditions for song performance in reproductive contexts, similar to how human singers and athletes practice daily to maintain their performance.


Feedback, Sensory , Finches , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Male , Finches/physiology , Feedback, Sensory/physiology , Age Factors , Aging/physiology , Auditory Perception/physiology
2.
Cell Rep ; 43(5): 114196, 2024 May 28.
Article En | MEDLINE | ID: mdl-38717902

Memory recall and guidance are essential for motor skill acquisition. Like humans learning to speak, male zebra finches learn to sing by first memorizing and then matching their vocalization to the tutor's song (TS) during specific developmental periods. Yet, the neuroanatomical substrate supporting auditory-memory-guided sensorimotor learning has remained elusive. Here, using a whole-brain connectome analysis with activity-dependent viral expression, we identified a transient projection into the motor region, HVC, from neuronal ensembles responding to TS in the auditory forebrain, the caudomedial nidopallium (NCM), in juveniles. Virally induced cell death of the juvenile, but not adult, TS-responsive NCM neurons impaired song learning. Moreover, isolation, which delays closure of the sensory, but not the motor, learning period, did not affect the decrease of projections into the HVC from the NCM TS-responsive neurons after the song learning period. Taken together, our results suggest that dynamic axonal pruning may regulate timely auditory-memory-guided vocal learning during development.


Finches , Learning , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Finches/physiology , Learning/physiology , Male , Neurons/physiology , Connectome
3.
Mol Brain ; 16(1): 48, 2023 06 03.
Article En | MEDLINE | ID: mdl-37270583

Neuronal tuning for spectral and temporal features has been studied extensively in the auditory system. In the auditory cortex, diverse combinations of spectral and temporal tuning have been found, but how specific feature tuning contributes to the perception of complex sounds remains unclear. Neurons in the avian auditory cortex are spatially organized in terms of spectral or temporal tuning widths, providing an opportunity for investigating the link between auditory tuning and perception. Here, using naturalistic conspecific vocalizations, we asked whether subregions of the auditory cortex that are tuned for broadband sounds are more important for discriminating tempo than pitch, due to the lower frequency selectivity. We found that bilateral inactivation of the broadband region impairs performance on both tempo and pitch discrimination. Our results do not support the hypothesis that the lateral, more broadband subregion of the songbird auditory cortex contributes more to processing temporal than spectral information.


Auditory Cortex , Songbirds , Animals , Auditory Cortex/physiology , Songbirds/physiology , Auditory Perception/physiology , Pitch Discrimination , Acoustic Stimulation/methods , Vocalization, Animal/physiology
4.
Proc Natl Acad Sci U S A ; 116(45): 22833-22843, 2019 11 05.
Article En | MEDLINE | ID: mdl-31636217

Birdsong, like human speech, consists of a sequence of temporally precise movements acquired through vocal learning. The learning of such sequential vocalizations depends on the neural function of the motor cortex and basal ganglia. However, it is unknown how the connections between cortical and basal ganglia components contribute to vocal motor skill learning, as mammalian motor cortices serve multiple types of motor action and most experimentally tractable animals do not exhibit vocal learning. Here, we leveraged the zebra finch, a songbird, as an animal model to explore the function of the connectivity between cortex-like (HVC) and basal ganglia (area X), connected by HVC(X) projection neurons with temporally precise firing during singing. By specifically ablating HVC(X) neurons, juvenile zebra finches failed to copy tutored syllable acoustics and developed temporally unstable songs with less sequence consistency. In contrast, HVC(X)-ablated adults did not alter their learned song structure, but generated acoustic fluctuations and responded to auditory feedback disruption by the introduction of song deterioration, as did normal adults. These results indicate that the corticobasal ganglia input is important for learning the acoustic and temporal aspects of song structure, but not for generating vocal fluctuations that contribute to the maintenance of an already learned vocal pattern.


Animal Communication , Cerebral Cortex/physiology , Ganglia/physiology , Learning , Neurons/physiology , Songbirds/physiology , Animals , Cerebral Cortex/cytology , Ganglia/cytology
5.
J Comp Neurol ; 526(17): 2856-2869, 2018 12 01.
Article En | MEDLINE | ID: mdl-30198559

Acetylcholine receptors (AChRs) abound in the central nervous system of vertebrates. Muscarinic AChRs (mAChRs), a functional subclass of AChRs, mediate neuronal responses via intracellular signal transduction. They also play roles in sensorimotor coordination and motor skill learning by enhancing cortical plasticity. Learned birdsong is a complex motor skill acquired through sensorimotor coordination during a critical period. However, the functions of AChRs in the neural circuits for vocal learning and production remain largely unexplored. Here, we report the unique expression of mAChRs subunits (chrm2-5) in the song nuclei of zebra finches. The expression of excitatory subunits (chrm3 and chrm5) was downregulated in the song nuclei compared with the surrounding brain regions. In contrast, the expression of inhibitory mAChRs (chrm2 and chrm4) was upregulated in the premotor song nucleus HVC relative to the surrounding nidopallium. Chrm4 showed developmentally different expression in HVC during the critical period. Compared with chrm4, individual differences in chrm2 expression emerged in HVC early in the critical period. These individual differences in chrm2 expression persisted despite testosterone administration or auditory deprivation, which altered the timing of song stabilization. Instead, the variability in chrm2 expression in HVC correlated with parental genetics. In addition, chrm2 expression in HVC exhibited species differences and individual variability among songbird species. These results suggest that mAChRs play an underappreciated role in the development of species and individual differences in song patterns by modulating the excitability of HVC neurons, providing a potential insight into the gating of auditory responses in HVC neurons.


Learning/physiology , Neural Pathways/physiology , Receptors, Muscarinic/biosynthesis , Songbirds/physiology , Vocalization, Animal/physiology , Animals , Brain Chemistry/genetics , Deafness/physiopathology , Finches/physiology , Individuality , Male , Real-Time Polymerase Chain Reaction , Receptor, Muscarinic M1/biosynthesis , Receptor, Muscarinic M1/genetics , Receptor, Muscarinic M2/biosynthesis , Receptor, Muscarinic M2/genetics , Receptors, Muscarinic/genetics , Species Specificity , Testosterone/pharmacology
6.
Dev Neurobiol ; 78(7): 671-686, 2018 07.
Article En | MEDLINE | ID: mdl-29569407

Learned vocalizations are important for communication in some vertebrate taxa. The neural circuitry for the learning and production of vocalizations is well known in songbirds, many of which learn songs initially during a critical period early in life. Dopamine is essential for motor learning, including song learning, and dopamine-related measures change throughout development in song-control regions such as HVC, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and the robust nucleus of the arcopallium (RA). In mammals, the neuropeptide neurotensin strongly interacts with dopamine signaling. This study investigated a potential role for the neurotensin system in song learning by examining how neurotensin (Nts) and neurotensin receptor 1 (Ntsr1) expression change throughout development. Nts and Ntsr1 mRNA expression was analyzed in song-control regions of male zebra finches in four stages of the song learning process: pre-subsong (25 days posthatch; dph), subsong (45 dph), plastic song (60 dph), and crystallized song (130 dph). Nts expression in LMAN during the subsong stage was lower compared to other time points. Ntsr1 expression was highest in HVC, Area X, and RA during the pre-subsong stage. Opposite and complementary expression patterns for the two genes in song nuclei and across the whole brain suggest distinct roles for regions that produce and receive Nts. The expression changes at crucial time points for song development are similar to changes observed in dopamine studies and suggest Nts may be involved in the process of vocal learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 671-686, 2018.


Avian Proteins/metabolism , Brain/growth & development , Finches/growth & development , Neurotensin/metabolism , Receptors, Neurotensin/metabolism , Vocalization, Animal/physiology , Animals , Brain/cytology , Brain/metabolism , Finches/anatomy & histology , Finches/metabolism , Gene Expression Regulation, Developmental , In Situ Hybridization , Male , RNA, Messenger/metabolism
...