Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pain ; 164(2): e103-e115, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638307

RESUMEN

ABSTRACT: Tissue injuries, including burns, are major causes of death and morbidity worldwide. These injuries result in the release of intracellular molecules and subsequent inflammatory reactions, changing the tissues' chemical milieu and leading to the development of persistent pain through activating pain-sensing primary sensory neurons. However, the majority of pain-inducing agents in injured tissues are unknown. Here, we report that, amongst other important metabolite changes, lysophosphatidylcholines (LPCs) including 18:0 LPC exhibit significant and consistent local burn injury-induced changes in concentration. 18:0 LPC induces immediate pain and the development of hypersensitivities to mechanical and heat stimuli through molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1, and member 2 at least partly via increasing lateral pressure in the membrane. As levels of LPCs including 18:0 LPC increase in other tissue injuries, our data reveal a novel role for these lipids in injury-associated pain. These findings have high potential to improve patient care.


Asunto(s)
Lisofosfatidilcolinas , Dolor , Humanos , Lisofosfatidilcolinas/toxicidad
2.
Biomedicines ; 10(6)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35740347

RESUMEN

Perineural treatment of peripheral nerves with capsaicin produces a long-lasting selective regional thermo- and chemo-analgesia and elimination of the neurogenic inflammatory response involving degeneration of nociceptive afferent fibers. In this study, we examined longitudinal changes in mustard oil-induced sensory neurogenic vasodilatation and plasma extravasation following perineural capsaicin treatment of the rat saphenous nerve utilizing scanning laser Doppler imaging and vascular labeling with colloidal silver. Capsaicin treatment resulted in a marked decrease in mustard oil-induced vasodilatation in the skin area served by the saphenous nerve. Repeated imaging of the vasodilatatory response showed no recovery for at least 7 weeks. However, following transection and ligation of the capsaicin-treated saphenous nerve, a substantial recovery of the vasodilatatory response was observed, suggesting a reinnervation of the chemodenervated skin area by collateral sprouting of neighboring intact sciatic nerve afferents. Elimination of the recovered vascular reaction by capsaicin treatment of the sciatic nerve supported this conclusion. Similar results have been obtained by using the vascular labeling technique. These findings indicate an inhibitory effect of persisting cutaneous nerve fibers on the collateral sprouting of intact nerve fibers into the chemodenervated skin area. These observations may bear implications for the development of sensory disturbances following peripheral nerve injuries.

3.
J Headache Pain ; 23(1): 7, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033025

RESUMEN

BACKGROUND: Clinical observations suggest that hyperinsulinemia and insulin resistance can be associated with migraine headache. In the present study we examined the effect of insulin on transient receptor potential vanilloid 1 (TRPV1) receptor-dependent meningeal nociceptor functions in rats. METHODS: The effects of insulin on the TRPV1 receptor stimulation-induced release of calcitonin gene related peptide (CGRP) from trigeminal afferents and changes in meningeal blood flow were studied. Colocalization of the insulin receptor, the TRPV1 receptor and CGRP was also analyzed in trigeminal ganglion neurons. RESULTS: Insulin induced release of CGRP from meningeal afferents and consequent increases in dural blood flow through the activation of TRPV1 receptors of trigeminal afferents. Insulin sensitized both neural and vascular TRPV1 receptors making them more susceptible to the receptor agonist capsaicin. Immunohistochemistry revealed colocalization of the insulin receptor with the TRPV1 receptor and CGRP in a significant proportion of trigeminal ganglion neurons. CONCLUSIONS: Insulin may activate or sensitize meningeal nociceptors that may lead to enhanced headache susceptibility in persons with increased plasma insulin concentration.


Asunto(s)
Insulina , Canales Catiónicos TRPV , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Capsaicina/farmacología , Ratas , Ganglio del Trigémino/metabolismo
4.
Cell Tissue Res ; 383(2): 677-692, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32960358

RESUMEN

Peripheral nerve injury is associated with spinal microgliosis which plays a pivotal role in the development of neuropathic pain behavior. Several agents of primary afferent origin causing the microglial reaction have been identified, but the type(s) of primary afferents that release these mediators are still unclear. In this study, specific labeling of C-fiber spinal afferents by lectin histochemistry and selective chemodenervation by capsaicin were applied to identify the type(s) of primary afferents involved in the microglial response. Comparative quantitative morphometric evaluation of the microglial reaction in central projection territories of intact and injured peripheral nerves in the superficial (laminae I and II) and deep (laminae III and IV) spinal dorsal horn revealed a significant, about three-fold increase in microglial density after transection of the sciatic or the saphenous nerve. Prior perineural treatment of these nerves with capsaicin, resulting in a selective defunctionalization of C-fiber afferent fibers failed to affect spinal microgliosis. Similarly, peripheral nerve injury-induced increase in microglial density was unaffected in rats treated neonatally with capsaicin known to result in a near-total loss of C-fiber dorsal root fibers. Perineural treatment with capsaicin per se did not evoke a significant increase in microglial density. These observations indicate that injury-induced spinal microgliosis may be attributed to phenotypic changes in injured myelinated primary afferent neurons, whereas the contribution of C-fiber primary sensory neurons to this neuroimmune response is negligible. Spinal myelinated primary afferents may play a hitherto unrecognized role in regulation of neuroimmune and perisynaptic microenvironments of the spinal dorsal horn.


Asunto(s)
Capsaicina/uso terapéutico , Gliosis/tratamiento farmacológico , Gliosis/etiología , Traumatismos de los Nervios Periféricos/complicaciones , Médula Espinal/patología , Animales , Animales Recién Nacidos , Capsaicina/farmacología , Recuento de Células , Gliosis/patología , Masculino , Traumatismos de los Nervios Periféricos/patología , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/patología , Ratas Wistar , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/patología
5.
Front Physiol ; 11: 439, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528300

RESUMEN

Restitution of cutaneous sensory function is accomplished by neural regenerative processes of distinct mechanisms following peripheral nerve lesions. Although methods available for the study of functional cutaneous nerve regeneration are specific and accurate, they are unsuitable for the longitudinal follow-up of the temporal and spatial aspects of the reinnervation process. Therefore, the aim of this study was to develop a new, non-invasive approach for the longitudinal examination of cutaneous nerve regeneration utilizing the determination of changes in the sensory neurogenic vasodilatatory response, a salient feature of calcitonin gene-related peptide-containing nociceptive afferent nerves, with scanning laser Doppler flowmetry. Scanning laser Doppler imaging was applied to measure the intensity and spatial extent of sensory neurogenic vasodilatation elicited by the application of mustard oil onto the dorsal skin of the rat hindpaw. Mustard oil induced reproducible and uniform increases in skin perfusion reaching maximum values at 2-4 min after application whereafter the blood flow gradually returned to control level after about 8-10 min. Transection and ligation of the saphenous nerve largely eliminated the vasodilatatory response in the medial aspect of the dorsal skin of the hindpaw. In the 2 nd to 4 th weeks after injury, the mustard oil-induced vasodilatatory reaction gradually recovered. Since regeneration of the saphenous nerve was prevented, the recovery of the vasodilatatory response may be accounted for by the collateral sprouting of neighboring intact sciatic afferent nerve fibers. This was supported by the elimination of the vasodilatatory response in both the saphenous and sciatic innervation territories following local treatment of the sciatic nerve with capsaicin to defunctionalize nociceptive afferent fibers. The present findings demonstrate that this novel technique utilizing scanning laser Doppler flowmetry to quantitatively measure cutaneous sensory neurogenic vasodilatation, a vascular response mediated by peptidergic nociceptive nerves, is a reliable non-invasive approach for the longitudinal study of nerve regeneration in the skin.

6.
Int J Mol Sci ; 21(7)2020 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-32260335

RESUMEN

Insulin, besides its pivotal role in energy metabolism, may also modulate neuronal processes through acting on insulin receptors (InsRs) expressed by neurons of both the central and the peripheral nervous system. Recently, the distribution and functional significance of InsRs localized on a subset of multifunctional primary sensory neurons (PSNs) have been revealed. Systematic investigations into the cellular electrophysiology, neurochemistry and morphological traits of InsR-expressing PSNs indicated complex functional interactions among specific ion channels, proteins and neuropeptides localized in these neurons. Quantitative immunohistochemical studies have revealed disparate localization of the InsRs in somatic and visceral PSNs with a dominance of InsR-positive neurons innervating visceral organs. These findings suggested that visceral spinal PSNs involved in nociceptive and inflammatory processes are more prone to the modulatory effects of insulin than somatic PSNs. Co-localization of the InsR and transient receptor potential vanilloid 1 (TRPV1) receptor with vasoactive neuropeptides calcitonin gene-related peptide and substance P bears of crucial importance in the pathogenesis of inflammatory pathologies affecting visceral organs, such as the pancreas and the urinary bladder. Recent studies have also revealed significant novel aspects of the neurotrophic propensities of insulin with respect to axonal growth, development and regeneration.


Asunto(s)
Insulina/metabolismo , Receptor de Insulina/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Axones/metabolismo , Humanos , Inflamación/metabolismo , Dolor/metabolismo , Células Receptoras Sensoriales/clasificación , Canales Catiónicos TRPV/metabolismo
7.
Int J Mol Sci ; 21(3)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028715

RESUMEN

Gangliosides are abundantly occurring sialylated glycosphingolipids serving diverse functions in the nervous system. Membrane-localized gangliosides are important components of lipid microdomains (rafts) which determine the distribution of and the interaction among specific membrane proteins. Different classes of gangliosides are expressed in nociceptive primary sensory neurons involved in the transmission of nerve impulses evoked by noxious mechanical, thermal, and chemical stimuli. Gangliosides, in particular GM1, have been shown to participate in the regulation of the function of ion channels, such as transient receptor potential vanilloid type 1 (TRPV1), a molecular integrator of noxious stimuli of distinct nature. Gangliosides may influence nociceptive functions through their association with lipid rafts participating in the organization of functional assemblies of specific nociceptive ion channels with neurotrophins, membrane receptors, and intracellular signaling pathways. Genetic and experimentally induced alterations in the expression and/or metabolism of distinct ganglioside species are involved in pathologies associated with nerve injuries, neuropathic, and inflammatory pain in both men and animals. Genetic and/or pharmacological manipulation of neuronal ganglioside expression, metabolism, and action may offer a novel approach to understanding and management of pain.


Asunto(s)
Gangliósidos/metabolismo , Neuralgia/patología , Enfermedades del Sistema Nervioso Periférico/complicaciones , Animales , Humanos , Neuralgia/etiología , Neuralgia/metabolismo , Transducción de Señal
8.
Br J Pharmacol ; 177(23): 5336-5356, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059259

RESUMEN

During the last decades, mortality from acute myocardial infarction has been dramatically reduced. However, the incidence of post-infarction heart failure is still increasing. Cardioprotection by ischaemic conditioning had been discovered more than three decades ago. Its clinical translation, however, is still an unmet need. This is mainly due to the disrupted cardioprotective signalling pathways in the presence of different cardiovascular risk factors, co-morbidities and the medication being taken. Sensory neuropathy is one of the co-morbidities that has been shown to interfere with cardioprotection. In the present review, we summarize the diverse aetiology of sensory neuropathies and the mechanisms by which these neuropathies may interfere with ischaemic heart disease and cardioprotective signalling. Finally, we suggest future therapeutic options targeting both ischaemic heart and sensory neuropathy simultaneously. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.


Asunto(s)
Poscondicionamiento Isquémico , Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Humanos , Isquemia Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control
9.
Int J Mol Sci ; 20(4)2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30823517

RESUMEN

BACKGROUND: Here we examined myocardial microRNA (miRNA) expression profile in a sensory neuropathy model with cardiac diastolic dysfunction and aimed to identify key mRNA molecular targets of the differentially expressed miRNAs that may contribute to cardiac dysfunction. METHODS: Male Wistar rats were treated with vehicle or capsaicin for 3 days to induce systemic sensory neuropathy. Seven days later, diastolic dysfunction was detected by echocardiography, and miRNAs were isolated from the whole ventricles. RESULTS: Out of 711 known miRNAs measured by miRNA microarray, the expression of 257 miRNAs was detected in the heart. As compared to vehicle-treated hearts, miR-344b, miR-466b, miR-98, let-7a, miR-1, miR-206, and miR-34b were downregulated, while miR-181a was upregulated as validated also by quantitative real time polymerase chain reaction (qRT-PCR). By an in silico network analysis, we identified common mRNA targets (insulin-like growth factor 1 (IGF-1), solute carrier family 2 facilitated glucose transporter member 12 (SLC2a-12), eukaryotic translation initiation factor 4e (EIF-4e), and Unc-51 like autophagy activating kinase 2 (ULK-2)) targeted by at least three altered miRNAs. Predicted upregulation of these mRNA targets were validated by qRT-PCR. CONCLUSION: This is the first demonstration that sensory neuropathy affects cardiac miRNA expression network targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2, which may contribute to cardiac diastolic dysfunction. These results further support the need for unbiased omics approach followed by in silico prediction and validation of molecular targets to reveal novel pathomechanisms.


Asunto(s)
Insuficiencia Cardíaca Diastólica/etiología , MicroARNs/genética , Polineuropatías/complicaciones , Animales , Capsaicina/toxicidad , Modelos Animales de Enfermedad , Factor 4E Eucariótico de Iniciación/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Insuficiencia Cardíaca Diastólica/genética , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Polineuropatías/inducido químicamente , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Wistar
10.
Front Neurosci ; 12: 732, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364236

RESUMEN

Apart from its pivotal role in the regulation of carbohydrate metabolism, insulin exerts important neurotrophic and neuromodulator effects on dorsal root ganglion (DRG) neurons. The neurite outgrowth-promoting effect is one of the salient features of insulin's action on cultured DRG neurons. Although it has been established that a significant population of DRG neurons express the insulin receptor (InsR), the significance of InsR expression and the chemical phenotype of DRG neurons in relation to the neurite outgrowth-promoting effect of insulin has not been studied. Therefore, in this study by using immunohistochemical and quantitative stereological methods we evaluated the effect of insulin on neurite outgrowth of DRG neurons of different chemical phenotypes which express or lack the InsR. Insulin, at a concentration of 10 nM, significantly increased total neurite length, the length of the longest neurite and the number of branch points of cultured DRG neurons as compared to neurons cultured in control medium or in the presence of 1 µM insulin. In both the control and the insulin exposed cultures, ∼43% of neurons displayed InsR-immunoreactivity. The proportions of transient receptor potential vanilloid type 1 receptor (TRPV1)-immunoreactive (IR), calcitonin gene-related peptide (CGRP)-IR and Bandeiraea simplicifolia isolectin B4 (IB4)-binding neurons amounted to ∼61%, ∼57%, and ∼31% of DRG neurons IR for the InsR. Of the IB4-positive population only neurons expressing the InsR were responsive to insulin. In contrast, TRPV1-IR nociceptive and CGRP-IR peptidergic neurons showed increased tendency for neurite outgrowth which was further enhanced by insulin. However, the responsiveness of DRG neurons expressing the InsR was superior to populations of DRG neurons which lack this receptor. The findings also revealed that besides the expression of the InsR, inherent properties of peptidergic, but not non-peptidergic nociceptive neurons may also significantly contribute to the mechanisms of neurite outgrowth of DRG neurons. These observations suggest distinct regenerative propensity for differing populations of DRG neurons which is significantly affected through insulin receptor signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA