Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 8(1): 95, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391580

RESUMEN

Reference materials are critical in assay development for calibrating and assessing their suitability. The devasting nature of the COVID-19 pandemic and subsequent proliferation of vaccine platforms and technologies has meant that there is even a greater need for standards for immunoassay development, which are critical to assess and compare vaccines' responses. Equally important are the standards needed to control the vaccine manufacturing processes. Standardized vaccine characterization assays throughout process development are essential for a successful Chemistry, Manufacturing and Controls (CMC) strategy. In this perspective paper, we advocate for reference material incorporation into assays and their calibration to International Standards from preclinical vaccine development through control testing and provide insight into why this is necessary. We also provide information on the availability of WHO international antibody standards for CEPI-priority pathogens.

2.
NPJ Vaccines ; 6(1): 53, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850138

RESUMEN

The COVID-19 pandemic has prompted hundreds of laboratories around the world to employ traditional as well as novel technologies to develop vaccines against SARS-CoV-2. The hallmarks of a successful vaccine are safety and efficacy. Analytical evaluation methods, that can ensure the high quality of the products and that can be executed speedily, must be in place as an integral component of Chemistry, Manufacturing, and Control (CMC). These methods or assays are developed to quantitatively test for critical quality attributes (CQAs) of a vaccine product. While clinical (human) efficacy of a vaccine can never be predicted from pre-clinical evaluation of CQA, precise and accurate measurements of antigen content and a relevant biological activity (termed "potency") elicited by the antigen allow selection of potentially safe and immunogenic doses for entry into clinical trials. All available vaccine technology platforms, novel and traditional, are being utilized by different developers to produce vaccines against SARS-CoV-2. It took less than a year from the publication of SARS-CoV-2 gene sequence to Emergency Use Authorization (EUA) of the first vaccine, setting a record for speed in the history of vaccine development. The largest ever global demand for vaccines has prompted some vaccine developers to enter multiple manufacturing partnerships in different countries in addition to implementing unprecedented scale-up plans. Quantitative, robust, and rapid analytical testing for CQA of a product is essential in ensuring smooth technology transfer between partners and allowing analytical bridging between vaccine batches used in different clinical phases leading up to regulatory approvals and commercialization. We discuss here opportunities to improve the speed and quality of the critical batch release and characterization assays.

3.
J Biochem ; 167(4): 399-409, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794019

RESUMEN

CD81 is involved in leukocyte migration and cytokine induction. Previous work found that anti-CD81 monoclonal antibodies (mAbs) showed therapeutic potential for several immune diseases via inhibiting leukocyte migration. Although the suppression of cell migration is a promising approach for treating immune diseases, some anti-CD81 mAbs can induce cytokine production, which may exacerbate disease. To obtain new anti-human CD81 mAbs that inhibited migration in the absence of cytokine production enhancement activity, we screened a human single chain variable fragment by phage library. One of the new anti-CD81 mAbs isolated, DSP-8250, had equivalent inhibitory cell migration activity with the established anti-CD81 mAb 5A6, but it lacked cytokine induction activity. These mAbs recognized different epitopes on CD81. mAb 5A6, which had inhibitory activity on T-cell migration and increased cytokine production, bound to three residues, Ser179, Asn180 and Phe186 of CD81. In contrast, DSP-8250, which had inhibitory activity on T-cell migration but no cytokine enhancement activity, bound to four residues, His151, Ala164, Ser168 and Asn172 of CD81 as a unique epitope. These results indicate that the set of His151, Ala164, Ser168 and Asn172 forms a novel epitope that might make the application of anti-CD81 mAb therapeutically useful.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Movimiento Celular/inmunología , Citocinas/biosíntesis , Epítopos/inmunología , Linfocitos T/inmunología , Tetraspanina 28/inmunología , Proliferación Celular , Citocinas/inmunología , Humanos , Células Jurkat , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Tetraspanina 28/aislamiento & purificación
4.
Endocrinology ; 156(11): 4365-73, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26284426

RESUMEN

The prolactin receptor (PRLR) has been implicated in a variety of physiological processes (lactation, reproduction) and diseases (breast cancer, autoimmune diseases). Prolactin synthesis in the pituitary and extrapituitary sites is regulated by different promoters. Dopamine receptor agonists such as bromocriptine can only interfere with pituitary prolactin synthesis and thus do not induce a complete blockade of PRLR signaling. Here we describe the identification of a human monoclonal antibody 005-C04 that blocks PRLR-mediated signaling at nanomolar concentrations in vitro. In contrast to a negative control antibody, the neutralizing PRLR antibody 005-C04 inhibits signal transducer and activator of transcription 5 phosphorylation in T47D cells and proliferation of BaF3 cells stably expressing murine or human PRLRs in a dose-dependent manner. In vivo application of this new function-blocking PRLR antibody reflects the phenotype of PRLR-deficient mice. After antibody administration female mice become infertile in a reversible manner. In lactating dams, the antibody induces mammary gland involution and negatively interferes with lactation capacity as evidenced by reduced milk protein expression in mammary glands and impaired litter weight gain. Antibody-mediated blockade of the PRLR in vivo stimulates hair regrowth in female mice. Compared with peptide-derived PRLR antagonists, the PRLR antibody 005-C04 exhibits several advantages such as higher potency, noncompetitive inhibition of PRLR signaling, and a longer half-life, which allows its use as a tool compound also in long-term in vivo studies. Therefore, we suggest that this antibody will help to further our understanding of the role of auto- and paracrine PRLR signaling in health and disease.


Asunto(s)
Anticuerpos Neutralizantes/administración & dosificación , Fenotipo , Receptores de Prolactina/inmunología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Ratones Noqueados , Receptores de Prolactina/genética , Receptores de Prolactina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...