Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Hypertension ; 81(6): 1308-1319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563153

RESUMEN

BACKGROUND: Abnormalities of resistance arteries may play essential roles in the pathophysiology of aging and hypertension. Deficiency of the vascular extracellular matrix protein MFAP4 (microfibrillar-associated protein 4) has previously been observed as protective against aberrant arterial remodeling. We hypothesized that MFAP4-deficiency would reduce age- and hypertension-dependent arterial changes in extracellular matrix composition and stiffening. METHODS: Mesenteric arteries were isolated from old (20-23 months) littermate Mfap4+/+ and Mfap4-/- mice, and 2-photon excitation microscopy imaging was used to quantify elastin and collagen volumes and dimensions in the vascular wall. Ten-week-old littermate Mfap4+/+ and Mfap4-/- mice were subjected to 20 days of continuous Ang II (angiotensin II) infusion and hypertension was monitored using invasive blood pressure measurements. Arterial stiffness, responses to vascular constrictors, and myogenic tone were monitored using wire- or pressure-myography. Collagen contents were assessed by Western blotting. RESULTS: MFAP4-deficiency significantly increased collagen volume and elastin fragmentation in aged mesenteric arteries without affecting arterial stiffness. MFAP4-deficient mice exhibited reduced diastolic pressure in Ang II-induced hypertension. There was no significant effect of MFAP4-deficiency on mesenteric artery structural remodeling or myogenic tone, although collagen content in mesenteric arteries was tendentially increased in hypertensive Mfap4+/+ mice relative to Mfap4-/- mice. Increased efficacy of vasoconstrictors (phenylephrine, thromboxane) and reduced stiffness were observed in Ang II-treated Mfap4-/- mouse mesenteric arteries in ex vivo myography recordings. CONCLUSIONS: MFAP4-deficiency reduces the elastin/collagen ratio in the aging resistance artery without affecting arterial stiffness. In contrast, MFAP4-deficiency reduces the stiffness of resistance arteries and ameliorates Ang II-induced hypertension.


Asunto(s)
Envejecimiento , Angiotensina II , Hipertensión , Arterias Mesentéricas , Resistencia Vascular , Rigidez Vascular , Animales , Hipertensión/fisiopatología , Hipertensión/metabolismo , Hipertensión/genética , Ratones , Arterias Mesentéricas/fisiopatología , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Rigidez Vascular/fisiología , Rigidez Vascular/efectos de los fármacos , Resistencia Vascular/fisiología , Envejecimiento/fisiología , Angiotensina II/farmacología , Elastina/metabolismo , Presión Sanguínea/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/deficiencia , Ratones Noqueados , Modelos Animales de Enfermedad , Masculino , Colágeno/metabolismo
3.
J Biol Chem ; 300(1): 105552, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072065

RESUMEN

Fibrinogen C domain-containing protein 1 (FIBCD1) is an immune protein proposed to be involved in host recognition of chitin on the surface of pathogens. As FIBCD1 readily binds acetylated molecules, we have determined the high-resolution crystal structures of a recombinant fragment of the FIBCD1 C-terminal domain complexed with small N-acetyl-containing ligands to determine the mode of recognition. All ligands bind at the conserved N-acetyl-binding site (S1) with galactose and glucose-derived ligands rotated 180° relative to each other. One subunit of a native structure derived from protein expressed in mammalian cells binds glycosylation from a neighboring subunit, in an extended binding site. Across the various structures, the primary S1 binding pocket is occupied by N-acetyl-containing ligands or acetate, with N-acetyl, acetate, or sulfate ion in an adjacent pocket S1(2). Inhibition binding studies of N-acetylglucosamine oligomers, (GlcNAc)n, n = 1, 2, 3, 5, 11, via ELISA along with microscale thermophoresis affinity assays indicate a strong preference of FIBCD1 for longer N-acetylchitooligosaccharides. Binding studies of mutant H396A, located beyond the S1(2) site, showed no significant difference from wildtype, but K381L, within the S1(2) pocket, blocked binding to the model ligand acetylated bovine serum albumin, suggesting that S1(2) may have functional importance in ligand binding. The binding studies, alongside structural definition of diverse N-acetyl monosaccharide binding in the primary S1 pocket and of additional, adjacent binding pockets, able to accommodate both carbohydrate and sulfate functional groups, suggest a versatility in FIBCD1 to recognize chitin oligomers and other pathogen-associated carbohydrate motifs across an extended surface.


Asunto(s)
Receptores de Superficie Celular , Humanos , Acetatos , Sitios de Unión/fisiología , Carbohidratos/química , Quitina/metabolismo , Hemostáticos , Ligandos , Unión Proteica , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Sulfatos , Modelos Moleculares , Estructura Terciaria de Proteína
4.
Front Oncol ; 13: 1280891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090485

RESUMEN

Background: Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, highlighting the pressing need to address its development. Inflammation plays a crucial role in augmenting the risk of CRC and actively contributes to all stages of tumorigenesis. Consequently, targeting early inflammatory responses in the intestinal tract to restore homeostasis holds significant potential for preventing and treating CRC. Fibrinogen C domain-containing 1 (FIBCD1), a chitin-binding transmembrane protein predominantly found on human intestinal epithelial cells (IECs), has garnered attention in previous research for its ability to effectively suppress inflammatory responses and promote tissue homeostasis at mucosal barriers. Methods: In this study, we investigated the role of FIBCD1 in CRC development using transgenic mice that mimic human expression of FIBCD1 at the intestinal mucosal barrier. To model aspects of CRC, we employed the azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model. Additionally, we examined the expression pattern of FIBCD1 in surgical specimens obtained from human CRC patients by immunohistochemical methods. By accessing public data repositories, we further evaluated FIBCD1 expression in colon adenocarcinoma and explored survival outcomes associated with FIBCD1 expression. Results: Here, we demonstrate that FIBCD1 substantially impacts CRC development by significantly reducing intestinal inflammation and suppressing colorectal tumorigenesis in mice. Furthermore, we identify a soluble variant of FIBCD1 that is significantly increased in feces during acute inflammation. Finally, we demonstrate increased expression of FIBCD1 by immunohistochemistry in human CRC specimens at more developed tumor stages. These results are further supported by bioinformatic analyses of publicly available repositories, indicating increased FIBCD1 expression in tumor tissues, where higher expression is associated with unfavorable prognosis. Conclusion: Collectively, these findings suggest that FIBCD1 influences early inflammatory responses in the AOM/DSS model, leading to a reduction in tumor size and burden. The increased expression of FIBCD1 in human CRC samples raises intriguing questions regarding its role in CRC, positioning it as a compelling candidate and novel molecular target for future research.

5.
Cells ; 11(13)2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35805199

RESUMEN

Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein belonging to the fibrinogen-related domain superfamily. MFAP4 is highly expressed in elastin-rich tissues such as lung, blood vessels and skin. MFAP4 is involved in organization of the ECM, regulating proper elastic fiber assembly. On the other hand, during pathology MFAP4 actively contributes to disease development and progression due to its interactions with RGD-dependent integrin receptors. Both tissue expression and circulating MFAP4 levels are associated with various disorders, including liver fibrosis and cancer. In other experimental models, such as teleost fish, MFAP4 appears to participate in host defense as a macrophage-specific innate immune molecule. The aim of this review is to summarize the accumulating evidence that indicates the importance of MFAP4 in homeostasis as well as pathological conditions, discuss its known biological functions with special focus on elastic fiber assembly, integrin signaling and cancer, as well as describe the reported functions of non-mammalian MFAP4 in fish. Overall, our work provides a comprehensive overview on the role of MFAP4 in health and disease.


Asunto(s)
Tejido Elástico , Neoplasias , Animales , Proteínas Portadoras/metabolismo , Tejido Elástico/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Homeostasis , Integrinas/metabolismo , Neoplasias/metabolismo
6.
Matrix Biol ; 111: 1-25, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644509

RESUMEN

Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein belonging to the fibrinogen-related domain family. It has been localized to elastic fiber-rich regions in several tissues including the arteries, lungs, heart and skin. MFAP4 binds collagen, fibrillins and tropoelastin and contributes to the process of microfibrillar assembly and maturation of elastic fibers. MFAP4 can also bind RGD-dependent integrins, predominantly αVß3 and αVß5 through its N-terminal RGD sequence, modulating cellular behavior. Circulating MFAP4 was suggested as a robust biomarker for hepatitis C virus- and alcoholic liver disease-related liver fibrosis, cardiovascular disorders and chronic obstructive pulmonary disease. In mice, MFAP4 seems to have a widely redundant role under homeostatic conditions, as global MFAP4 deficiency results in a mild pulmonary phenotype, causing emphysema-like airspace enlargement that progresses with age. However, emerging in vivo and in vitro data suggest that MFAP4 is actively involved in the pathogenesis of remodeling-associated diseases, including fibrosis, cardiovascular disorders, aging, asthma and cancer through activation of integrin-mediated signaling as well as by modulating TGF-ß pathway, thus supporting maladaptive matrix remodeling. This review summarizes the current knowledge about MFAP4 structure and localization, its mechanisms of action in disease-induced tissue remodeling as well as its potential role as a clinical biomarker.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Animales , Biomarcadores , Proteínas Portadoras/genética , Proteínas de la Matriz Extracelular/genética , Humanos , Ratones , Oligopéptidos/metabolismo
7.
Cell Surf ; 8: 100072, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35118215

RESUMEN

Humoral immunity plays a defensive role against invading microbes. However, it has been largely overlooked with respect to Aspergillus fumigatus, an airborne fungal pathogen. Previously, we have demonstrated that surfactant protein D (SP-D), a major humoral component in human lung-alveoli, recognizes A. fumigatus conidial surface exposed melanin pigment. Through binding to melanin, SP-D opsonizes conidia, facilitates conidial phagocytosis, and induces the expression of protective pro-inflammatory cytokines in the phagocytic cells. In addition to melanin, SP-D also interacts with galactomannan (GM) and galactosaminogalactan (GAG), the cell wall polysaccharides exposed on germinating conidial surfaces. Therefore, we aimed at unravelling the biological significance of SP-D during the germination process. Here, we demonstrate that SP-D exerts direct fungistatic activity by restricting A. fumigatus hyphal growth. Conidial germination in the presence of SP-D significantly increased the exposure of cell wall polysaccharides chitin, α-1,3-glucan and GAG, and decreased ß-1,3-glucan exposure on hyphae, but that of GM was unaltered. Hyphae grown in presence of SP-D showed positive immunolabelling for SP-D. Additionally, SP-D treated hyphae induced lower levels of pro-inflammatory cytokine, but increased IL-10 (anti-inflammatory cytokine) and IL-8 (a chemokine) secretion by human peripheral blood mononuclear cells (PBMCs), compared to control hyphae. Moreover, germ tube surface modifications due to SP-D treatment resulted in an increased hyphal susceptibility to voriconazole, an antifungal drug. It appears that SP-D exerts its anti-A. fumigatus functions via a range of mechanisms including hyphal growth-restriction, hyphal surface modification, masking of hyphal surface polysaccharides and thus altering hyphal immunostimulatory properties.

8.
Immun Inflamm Dis ; 10(2): 189-200, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34780682

RESUMEN

BACKGROUND: Surfactant Protein D (SP-D) is a pattern recognition molecule belonging to the family of collectins expressed in multiple human organ systems, including the lungs. Previous studies have shown that SP-D levels in bronchoalveolar lavage samples decrease and serum levels increase in patients suffering from asthma, possibly due to a combination of induced SP-D synthesis and decreased air-blood barrier integrity. The aims of this study were to investigate whether serum levels of SP-D and common variants in the SP-D gene were associated with asthma in adolescents and young adults. METHODS: Prospective observational study including 449 adolescents and young adults (age 11-27 years) previously diagnosed with asthma during a 2-year period from 2003 to 2005 (0-16 years). At follow-up from 2016 to 2017, 314 healthy controls with no history of asthma were recruited. Serum SP-D was analyzed on samples obtained at baseline as well as samples obtained at follow-up. SP-D genotyping was performed for rs721917, rs2243639, and rs3088308. RESULTS: No differences were found in mean levels of sSP-D and SFTPD genotype among subjects with current asthma, no current asthma, and controls. Serum SP-D and SFTPD genotype were not associated with any clinical parameters of asthma. Furthermore, baseline sSP-D was not associated with asthma at follow-up. CONCLUSION: Serum surfactant protein D and common SP-D gene variants were not associated with asthma in Danish adolescents and young adults with mild to moderate asthma. Serum surfactant protein D did not demonstrate any value as a clinical biomarker of asthma.


Asunto(s)
Asma , Proteína D Asociada a Surfactante Pulmonar , Adolescente , Adulto , Asma/genética , Niño , Dinamarca/epidemiología , Genotipo , Humanos , Pulmón , Proteína D Asociada a Surfactante Pulmonar/sangre , Proteína D Asociada a Surfactante Pulmonar/genética , Adulto Joven
9.
Front Cardiovasc Med ; 8: 764337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805319

RESUMEN

Objective: Abdominal aortic aneurysm (AAA) is a common age-related vascular disease characterized by progressive weakening and dilatation of the aortic wall. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein involved in the induction of vascular remodeling. This study aimed to investigate if MFAP4 facilitates the development of AAA and characterize the underlying MFAP4-mediated mechanisms. Approach and Results: Double apolipoprotein E- and Mfap4-deficient (ApoE -/- Mfap4 -/-) and control apolipoprotein E-deficient (ApoE -/-) mice were infused subcutaneously with angiotensin II (Ang II) for 28 days. Mfap4 expression was localized within the adventitial and medial layers and was upregulated after Ang II treatment. While Ang II-induced blood pressure increase was independent of Mfap4 genotype, ApoE -/- Mfap4 -/- mice exhibited significantly lower AAA incidence and reduced maximal aortic diameter compared to ApoE -/- littermates. The ApoE -/- Mfap4 -/- AAAs were further characterized by reduced macrophage infiltration, matrix metalloproteinase (MMP)-2 and MMP-9 activity, proliferative activity, collagen content, and elastic membrane disruption. MFAP4 deficiency also attenuated activation of integrin- and TGF-ß-related signaling within the adventitial layer of AAA tissues. Finally, MFAP4 stimulation promoted human monocyte migration and significantly upregulated MMP-9 activity in macrophage-like THP-1 cells. Conclusion: This study demonstrates that MFAP4 induces macrophage-rich inflammation, MMP activity, and maladaptive remodeling of the ECM within the vessel wall, leading to an acceleration of AAA development and progression. Collectively, our findings suggest that MFAP4 is an essential aggravator of AAA pathology that acts through regulation of monocyte influx and MMP production.

10.
Sci Rep ; 11(1): 14687, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282203

RESUMEN

Mucositis is a serious adverse effect of chemotherapeutic treatment. During intestinal mucositis, the mucosal barrier is compromised, increasing the risk of severe infections. Mucositis necessitates dose reduction or pauses in treatment, which affect the outcome of the treatment. Deleted in malignant brain tumors 1 (DMBT1) is a secreted scavenger protein with effects on innate immunity and epithelial regeneration. We have previously shown that jejunal DMBT1 expression is increased in piglets during chemotherapeutic treatment. We hypothesized that DMBT1 ameliorates doxorubicin-induced mucositis. Individually-caged Dmbt1+/+ (WT) and Dmbt1-/- (KO) female mouse littermates received intraperitoneal injections of either doxorubicin or saline. They were euthanized after three (D3) or seven days (D7). Weight loss was monitored every day, and serum citrulline levels were measured at termination. Intestinal tissue was analyzed for the expression of DMBT1 and proinflammatory cytokines (IL-1ß, IL-6, and TNF). Specimens from the small intestines and colon were scored for inflammation and epithelial and mucosal architecture changes. We detected no effect of DMBT1 on weight loss, serum citrulline levels, expression of proinflammatory cytokines, or histologic damage. We detected a significant increase in crypt depth in WT mice compared to that in KO mice on D3. In conclusion, DMBT1 does not affect doxorubicin-induced mucositis in mice.


Asunto(s)
Antineoplásicos/efectos adversos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/genética , Mucositis/inducido químicamente , Mucositis/genética , Proteínas Supresoras de Tumor/genética , Animales , Modelos Animales de Enfermedad , Doxorrubicina/efectos adversos , Enteritis/inducido químicamente , Enteritis/genética , Enteritis/patología , Femenino , Predisposición Genética a la Enfermedad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/efectos de los fármacos , Intestinos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucositis/patología
12.
J Cell Physiol ; 236(1): 273-283, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32583462

RESUMEN

Lung cancer is one of the most common cancers and its incidence is rising around the world. Various studies suggest that miR-330 acts as a tumor-suppressor microRNA (miRNA) in different types of cancers, but precisely how has remained unclear. In this study, we investigate miR-330 expression in lung cancer patient samples, as well as in vitro, by studying how normalization of miR-330 expression affects lung cancer cellular phenotypes such as viability, apoptosis, proliferation, and migration. We establish that low miR-330 expression predicts poor lung cancer prognosis. Stable restoration of reduced miR-330 expression in lung cancer cells reduces cell viability, increases the fraction of apoptotic cells, causes G2/M cell cycle arrest, and inhibits cell migration. These findings are substantiated by increased mRNA and protein expression of markers for apoptosis via the intrinsic pathway, such as caspase 9, and decreased mRNA and protein expression of markers for cell migration, such as vimentin, C-X-C chemokine receptor type 4, and matrix metalloproteinase 9. We showed that reduced miR-330 expression predicts poor lung cancer survival and that stable restoration of miR-330 expression in lung cancer cells has a broad range of tumor-suppressive effects. This indicates that miR-330 is a promising candidate for miRNA replacement therapy for lung cancer patients.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Células A549 , Apoptosis/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Genes Supresores de Tumor/fisiología , Humanos , Neoplasias Pulmonares/patología , ARN Mensajero/genética
13.
Support Care Cancer ; 29(5): 2415-2421, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32918133

RESUMEN

PURPOSE: Chemotherapy-induced gastrointestinal toxicity is a common adverse event during chemotherapeutic treatment. No uniformly applicable strategies exist to predict, prevent, or treat gastrointestinal toxicity. Thus, a goal of mucositis research is to identify targets for therapeutic interventions and individualized risk prediction. Fibrinogen C domain containing 1 (FIBCD1) is a transmembrane protein expressed in human intestinal epithelial cells with functions in the innate immune system. Previous observations have shown that FIBCD1 ameliorates dextran sulfate sodium (DSS)-induced intestinal inflammation in vivo. We evaluated the effect of FIBCD1 in a murine model of chemotherapy-induced gastrointestinal toxicity and inflammation. METHODS: Transgenic (Tg) mice overexpressing FIBCD1 in the intestinal epithelium (Fibcd1Tg) and wild-type (WT) littermates (C57BL/6N) were randomized to receive an intraperitoneal injection of doxorubicin 20 mg/kg or saline and were terminated 2 or 7 days after the injection. Gastrointestinal toxicity was evaluated by weight change, intestinal length, villus height/crypt depth, and histological mucositis score. Expression of inflammatory markers (IL-6, IL-1ß, and Tnfα) was measured by quantitative real-time PCR in intestinal tissue samples. RESULTS: Following doxorubicin treatment, WT mice exhibited an increased weight loss compared with Tg littermates (p < 0.001). No differences between genotypes were seen in mucositis score, intestinal length, villus height/crypt depth, or IL-6, IL-1ß, and Tnfα expression. CONCLUSION: Our findings suggest that FIBCD1 could ameliorate chemotherapy-induced gastrointestinal toxicity by reducing weight loss; however, the mechanism of this possible protective effect remains to be defined warranting additional investigations.


Asunto(s)
Antineoplásicos/uso terapéutico , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Receptores de Superficie Celular/uso terapéutico , Pérdida de Peso/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Genotipo , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Immunobiology ; 225(4): 151953, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32747028

RESUMEN

Surfactant treatment for neonatal respiratory distress syndrome has dramatically improved survival of preterm infants. However, this has resulted in a markedly increased incidence of sequelae such as neonatal chronic inflammatory lung disease. The current surfactant preparations in clinical use lack the natural lung defence proteins surfactant proteins (SP)-A and D. These are known to have anti-inflammatory and anti-infective properties essential for maintaining healthy non-inflamed lungs. Supplementation of currently available animal derived surfactant therapeutics with these anti-inflammatory proteins in the first few days of life could prevent the development of inflammatory lung disease in premature babies. However, current systems for production of recombinant versions of SP-A and SP-D require a complex solubilisation and refolding protocol limiting expression at scale for drug development. Using a novel solubility tag, we describe the expression and purification of recombinant fragments of human (rfh) SP-A and SP-D using Escherichia coli without the need for refolding. We obtained a mean (± SD) of 23.3 (± 5.4) mg and 86 mg (± 3.5) per litre yield of rfhSP-A and rfhSP-D, respectively. rfhSP-D was trimeric and 68% bound to a ManNAc-affinity column, giving a final yield of 57.5 mg/litre of highly pure protein, substantially higher than the 3.3 mg/litre obtained through the standard refolding protocol. Further optimisation of this novel lab based method could potentially make rfhSP-A and rfhSP-D production more commercially feasible to enable development of novel therapeutics for the treatment of lung infection and inflammation.


Asunto(s)
Multimerización de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/química , Receptores Inmunológicos/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Modelos Moleculares , Conformación Proteica , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/aislamiento & purificación , Receptores Inmunológicos/genética , Receptores Inmunológicos/aislamiento & purificación , Proteínas Recombinantes , Relación Estructura-Actividad
15.
Liver Int ; 40(7): 1701-1712, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32339377

RESUMEN

BACKGROUND: Alcoholic liver disease (ALD) is a public health concern that is the cause of half of all cirrhosis-related deaths. Early detection of fibrosis, ideally in the precirrhotic stage, is a key strategy for improving ALD outcomes and for preventing progression to cirrhosis. Previous studies identified the blood-borne marker human microfibrillar-associated protein 4 (MFAP4) as a biomarker for detection of hepatitis C virus (HCV)-related fibrosis. AIM: To evaluate the diagnostic accuracy of MFAP4 to detect ALD-induced fibrosis. METHOD: We performed a prospective, liver biopsy-controlled study involving 266 patients with prior or current alcohol overuse. Patients were split into a training and a validation cohort. RESULTS: MFAP4 was present in fibrotic hepatic tissue and serum MFAP4 levels increased with fibrosis grade. The area under the receiver operating characteristic curve (AUROC) for detection of cirrhosis was 0.91 (95% CI 0.85-0.96) in the training cohort and 0.91 (95% CI 0.79-1.00) in the validation cohort. For detection of advanced fibrosis, the AUROC was 0.88 (95% CI 0.81-0.94) in the training cohort and 0.92 (95% CI 0.83-1.00) in the validation cohort. The diagnostic accuracy did not differ between MFAP4 and the enhanced liver fibrosis (ELF) test or transient elastography (TE) in an intention-to-diagnose analysis. MFAP4 did not predict hepatic decompensation in a time-to-decompensation analysis in a subgroup of patients with cirrhosis. CONCLUSION: MFAP4 is a novel biomarker that can detect ALD-related fibrosis with high accuracy.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hepatopatías Alcohólicas , Biopsia , Proteínas Portadoras , Proteínas de la Matriz Extracelular , Glicoproteínas , Humanos , Hígado/patología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/patología , Hepatopatías Alcohólicas/diagnóstico , Hepatopatías Alcohólicas/patología , Estudios Prospectivos , Curva ROC
16.
Hepatology ; 72(6): 2119-2133, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32145072

RESUMEN

BACKGROUND AND AIMS: Hepatic sinusoidal cells are known actors in the fibrogenic response to injury. Activated hepatic stellate cells (HSCs), liver sinusoidal endothelial cells, and Kupffer cells are responsible for sinusoidal capillarization and perisinusoidal matrix deposition, impairing vascular exchange and heightening the risk of advanced fibrosis. While the overall pathogenesis is well understood, functional relations between cellular transitions during fibrogenesis are only beginning to be resolved. At single-cell resolution, we here explored the heterogeneity of individual cell types and dissected their transitions and crosstalk during fibrogenesis. APPROACH AND RESULTS: We applied single-cell transcriptomics to map the heterogeneity of sinusoid-associated cells in healthy and injured livers and reconstructed the single-lineage HSC trajectory from pericyte to myofibroblast. Stratifying each sinusoidal cell population by activation state, we projected shifts in sinusoidal communication upon injury. Weighted gene correlation network analysis of the HSC trajectory led to the identification of core genes whose expression proved highly predictive of advanced fibrosis in patients with nonalcoholic steatohepatitis (NASH). Among the core members of the injury-repressed gene module, we identified plasmalemma vesicle-associated protein (PLVAP) as a protein amply expressed by mouse and human HSCs. PLVAP expression was suppressed in activated HSCs upon injury and may hence define hitherto unknown roles for HSCs in the regulation of microcirculatory exchange and its breakdown in chronic liver disease. CONCLUSIONS: Our study offers a single-cell resolved account of drug-induced injury of the mammalian liver and identifies key genes that may serve important roles in sinusoidal integrity and as markers of advanced fibrosis in human NASH.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Células Endoteliales/patología , Redes Reguladoras de Genes , Cirrosis Hepática/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Biopsia , Capilares/citología , Capilares/patología , Tetracloruro de Carbono/administración & dosificación , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Modelos Animales de Enfermedad , Endotelio Vascular/citología , Endotelio Vascular/patología , Femenino , Venas Hepáticas/citología , Venas Hepáticas/patología , Humanos , Hígado/irrigación sanguínea , Hígado/patología , Cirrosis Hepática/patología , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , RNA-Seq , Análisis de la Célula Individual
17.
Front Immunol ; 10: 2264, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616435

RESUMEN

Cardiovascular disease (CVD) is responsible for 31% of all global deaths. Atherosclerosis is the major cause of cardiovascular disease and is a chronic inflammatory disorder in the arteries. Atherosclerosis is characterized by the accumulation of cholesterol, extracellular matrix, and immune cells in the vascular wall. Recently, the collectin surfactant protein-D (SP-D), an important regulator of the pulmonary immune response, was found to be expressed in the vasculature. Several in vitro studies have examined the role of SP-D in the vascular inflammation leading to atherosclerosis. These studies show that SP-D plays a dual role in the development of atherosclerosis. In general, SP-D shows anti-inflammatory properties, and dampens local inflammation in the vessel, as well as systemic inflammation. However, SP-D can also exert a pro-inflammatory role, as it stimulates C-C chemokine receptor 2 inflammatory blood monocytes to secrete tumor necrosis-factor α and increases secretion of interferon-γ from natural killer cells. In vivo studies examining the role of SP-D in the development of atherosclerosis agree that SP-D plays a proatherogenic role, with SP-D knockout mice having smaller atherosclerotic plaque areas, which might be caused by a decreased systemic inflammation. Clinical studies examining the association between SP-D and cardiovascular disease have reported a positive association between circulatory SP-D level, carotid intima-media thickness, and coronary artery calcification. Other studies have found that circulatory SP-D is correlated with increased risk of both total and cardiovascular disease mortality. Both in vitro, in vivo, and clinical studies examining the relationship between SP-D and CVDs will be discussed in this review.


Asunto(s)
Aterosclerosis/inmunología , Vasos Sanguíneos/inmunología , Enfermedades Cardiovasculares/inmunología , Inflamación/inmunología , Proteína D Asociada a Surfactante Pulmonar/inmunología , Animales , Aterosclerosis/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Enfermedades Cardiovasculares/metabolismo , Inflamación/metabolismo , Interferón gamma/inmunología , Interferón gamma/metabolismo , Ratones , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Factores de Riesgo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Exp Med ; 216(12): 2689-2700, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31601676

RESUMEN

Host-microbiota interactions are critical in regulating mammalian health and disease. In addition to bacteria, parasites, and viruses, beneficial communities of fungi (the mycobiome) are important modulators of immune- and tissue-homeostasis. Chitin is a major component of the fungal cell wall, and fibrinogen C containing domain 1 (FIBCD1) is a chitin-binding protein; however, the role of this molecule in influencing host-mycobiome interactions in vivo has never been examined. Here, we identify direct binding of FIBCD1 to intestinal-derived fungi and demonstrate that epithelial-specific expression of FIBCD1 results in significantly reduced fungal colonization and amelioration of fungal-driven intestinal inflammation. Collectively, these results identify FIBCD1 as a previously unrecognized microbial pattern recognition receptor through which intestinal epithelial cells can recognize and control fungal colonization, limit fungal dysbiosis, and dampen intestinal inflammation.


Asunto(s)
Hongos/fisiología , Interacciones Microbianas , Micobioma , Receptores de Superficie Celular/metabolismo , Animales , Quitina/metabolismo , ADN Espaciador Ribosómico , Modelos Animales de Enfermedad , Enteritis/etiología , Enteritis/metabolismo , Enteritis/patología , Microbioma Gastrointestinal , Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Metagenómica , Ratones , Ratones Transgénicos , Unión Proteica , ARN Ribosómico 16S
19.
Inflamm Bowel Dis ; 25(8): 1349-1356, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30753482

RESUMEN

BACKGROUND: Inflammatory bowel diseases (IBD) are chronic disorders of the gastrointestinal tract. Surfactant protein D (SP-D) is expressed in the intestinal epithelium and is essential for innate host defense and regulation of inflammatory responses. Genetic variations of SP-D are associated with IBD, but the effects of SP-D in clinical disease development have not been clarified. We hypothesized that colonic epithelial SP-D expression is increased in parallel with intestinal inflammation with the capacity to dampen deleterious effects. METHODS: Surgical specimens from IBD patients including Crohn's disease (n = 9) and ulcerative colitis (n = 18) were scored for expression of SP-D and inflammatory activity. Cohoused Sftpd+/+ and Sftpd-/- mouse littermates were subjected to dextran sodium sulfate (DSS) for 7 days to induce colitis. Colonic tissue was scored for histologic damage and analyzed for inflammatory markers and expression of SP-D. RESULTS: Surgical specimens from IBD patients showed a strong positive correlation between immunoscore for SP-D and inflammatory activity (R2 = 0.78, P < 0.0001). In mice, colonic epithelial SP-D expression was very low, and DSS-induced colitis was unaffected by SP-D deficiency, although DSS induced transcription of colonic SP-D to a mild degree. CONCLUSIONS: A strong positive correlation between inflammatory activity and epithelial expression of SP-D was observed in surgical specimens from IBD patients supporting a role for SP-D in clinical disease. The in vivo study was inconclusive due to very low intestinal SP-D expression in the mouse. Further studies are warranted to support that increased SP-D expression in the human colonic epithelium is protective against intestinal inflammation.


Asunto(s)
Biomarcadores/metabolismo , Colitis/complicaciones , Inflamación/diagnóstico , Enfermedades Inflamatorias del Intestino/complicaciones , Mucosa Intestinal/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Femenino , Humanos , Inflamación/etiología , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Adulto Joven
20.
Front Immunol ; 9: 1967, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30279687

RESUMEN

Aspergillus fumigatus (A. fumigatus) is a ubiquitous fungus of clinical importance associated with development of various pulmonary diseases and allergic hypersensitivity reactions. It is protected against environmental stress by a cell wall that contains polysaccharides such as chitin. We previously demonstrated that fibrinogen C domain-containing protein 1 (FIBCD1) is a membrane-bound protein that binds chitin through a conserved S1 binding site and is expressed in intestinal epithelium and salivary glands. Here, we further localized FIBCD1 protein expression at the surface of bronchial and alveolar human lung epithelium, observed recognition of A. fumigatus cell wall with S1 site-independent recognition. We observed FIBCD1-mediated suppression of IL-8 secretion, mucin production, and transcription of genes associated with airway inflammation and homeostasis in FIBCD1-transfected lung epithelial cells. These modulations were generally enforced by stimulation with A. fumigatus cell wall polysaccharides. In parallel, we demonstrated a FIBCD1-mediated modulation of IL-8 secretion induced by TLR2,-4, and -5. Collectively, our findings support FIBCD1 as a human lung epithelial pattern recognition receptor that recognizes the complex A. fumigatus cell wall polysaccharides and modulates the lung epithelial inflammatory response by suppressing inflammatory mediators and mucins.


Asunto(s)
Aspergilosis/metabolismo , Aspergillus fumigatus/fisiología , Pulmón/patología , Receptores de Superficie Celular/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Aspergilosis/inmunología , Células Cultivadas , Polisacáridos Fúngicos/inmunología , Polisacáridos Fúngicos/metabolismo , Humanos , Inmunidad Innata , Inflamación/genética , Interleucina-8/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucinas/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...