Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 135
1.
Leukemia ; 38(5): 1086-1098, 2024 May.
Article En | MEDLINE | ID: mdl-38600314

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) constitutes a rare and aggressive malignancy originating from plasmacytoid dendritic cells (pDCs) with a primarily cutaneous tropism followed by dissemination to the bone marrow and other organs. We conducted a genome-wide analysis of the tumor methylome in an extended cohort of 45 BPDCN patients supplemented by WES and RNA-seq as well as ATAC-seq on selected cases. We determined the BPDCN DNA methylation profile and observed a dramatic loss of DNA methylation during malignant transformation from early and mature DCs towards BPDCN. DNA methylation profiles further differentiate between BPDCN, AML, CMML, and T-ALL exhibiting the most striking global demethylation, mitotic stress, and merely localized DNA hypermethylation in BPDCN resulting in pronounced inactivation of tumor suppressor genes by comparison. DNA methylation-based analysis of the tumor microenvironment by MethylCIBERSORT yielded two, prognostically relevant clusters (IC1 and IC2) with specific cellular composition and mutational spectra. Further, the transcriptional subgroups of BPDCN (C1 and C2) differ by DNA methylation signatures in interleukin/inflammatory signaling genes but also by higher transcription factor activity of JAK-STAT and NFkB signaling in C2 in contrast to an EZH2 dependence in C1-BPDCN. Our integrative characterization of BPDCN offers novel molecular insights and potential diagnostic applications.


DNA Methylation , Dendritic Cells , Humans , Dendritic Cells/pathology , Dendritic Cells/metabolism , Female , Male , Middle Aged , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Tumor Microenvironment/genetics , Aged , Adult , Prognosis , Gene Expression Regulation, Neoplastic , Mutation , Biomarkers, Tumor/genetics
2.
Oncogene ; 43(16): 1178-1189, 2024 Apr.
Article En | MEDLINE | ID: mdl-38396293

Dual-specificity phosphatase 8 (DUSP8) plays an important role as a selective c-Jun N-terminal kinase (JNK) phosphatase in mitogen-activated protein kinase (MAPK) signaling. In this study, we found that DUSP8 is silenced by miR-147b in patients with lung adenocarcinoma (LUAD), which correlates with poor overall survival. Overexpression of DUSP8 resulted in a tumor-suppressive phenotype in vitro and in vivo experimental models, whereas silencing DUSP8 with a siRNA approach abrogated the tumor-suppressive properties. We found that miR-147b is a posttranscriptional regulator of DUSP8 that is highly expressed in patients with LUAD and is associated with lower survival. NanoString analysis revealed that the MAPK signaling pathway is mainly affected by overexpression of miR-147b, leading to increased proliferation and migration and decreased apoptosis in vitro. Moreover, induction of miR-147b promotes tumor progression in vitro and in vivo experimental models. Knockdown of miR-147b restored DUSP8, decreased tumor progression in vitro, and increased apoptosis via JNK phosphorylation. These results suggest that miR-147b plays a key role in regulating MAPK signaling in LUAD. The link between DUSP8 and miR-147b may provide novel approaches for the treatment of lung cancer.


Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , Lung Neoplasms/genetics , MicroRNAs/genetics , Lung/metabolism , Adenocarcinoma of Lung/genetics , Mitogen-Activated Protein Kinases , Cell Proliferation/genetics , Cell Line, Tumor , Dual-Specificity Phosphatases/genetics
3.
Heliyon ; 10(3): e24570, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38314306

RNA viruses have been shown to express various short RNAs, some of which have regulatory roles during replication, transcription, and translation of viral genomes. However, short viral RNAs generated from SARS-CoV-1 and SARS-CoV-2 genomic RNAs remained largely unexplored, possibly due limitations of the widely used library preparation methods for small RNA deep sequencing and corresponding data processing. By analyzing publicly available small RNA sequencing datasets, we observed that human Calu-3 cells infected by SARS-CoV-1 or SARS-CoV-2 accumulate multiple previously unreported short viral RNAs. In addition, we verified the presence of the five most abundant SARS-CoV-2 short viral RNAs in SARS-CoV-2-infected human lung adenocarcinoma cells by quantitative PCR. Interestingly, the copy number of the observed SARS-CoV-2 short viral RNAs dramatically exceeded the expression of previously reported viral microRNAs in the same cells. We hypothesize that the reported SARS-CoV-2 short viral RNAs could serve as biomarkers for early infection stages due to their high abundance. Furthermore, unlike SARS-CoV-1, the SARS-CoV-2 infection induced significant (Benjamini-Hochberg-corrected p-value <0.05) deregulation of Y-RNA, transfer RNA, vault RNA, as well as more than 300 endogenous short RNAs that aligned predominantly to human protein-coding and long noncoding RNA transcripts. In particular, more than 20-fold upregulation of reads derived from Y-RNA (and several transfer RNAs) have been documented in RNA-seq datasets from SARS-CoV-2 infected cells. Finally, a significant proportion of short RNAs derived from full-length viral genomes also aligned to various human genome (hg38) sequences, suggesting opportunities to investigate regulatory roles of short viral RNAs during infection. Further characterization of the small RNA landscape of both viral and host genomes is clearly warranted to improve our understanding of molecular events related to infection and to design more efficient strategies for therapeutic interventions as well as early diagnosis.

4.
Digit Health ; 9: 20552076231173304, 2023.
Article En | MEDLINE | ID: mdl-37152238

Introduction: Artificial intelligence (AI) is increasingly used in healthcare. AI-based chatbots can act as automated conversational agents, capable of promoting health and providing education at any time. The objective of this study was to develop and evaluate a user-friendly medical chatbot (prostate cancer communication assistant (PROSCA)) for provisioning patient information about early detection of prostate cancer (PC). Methods: The chatbot was developed to provide information on prostate diseases, diagnostic tests for PC detection, stages, and treatment options. Ten men aged 49 to 81 years with suspicion of PC were enrolled in this study. Nine of ten patients used the chatbot during the evaluation period and filled out the questionnaires on usage and usability, perceived benefits, and potential for improvement. Results: The chatbot was straightforward to use, with 78% of users not needing any assistance during usage. In total, 89% of the chatbot users in the study experienced a clear to moderate increase in knowledge about PC through the chatbot. All study participants who tested the chatbot would like to re-use a medical chatbot in the future and support the use of chatbots in the clinical routine. Conclusions: Through the introduction of the chatbot PROSCA, we created and evaluated an innovative evidence-based health information tool in the field of PC, allowing targeted support for doctor-patient communication and offering great potential in raising awareness, patient education, and support. Our study revealed that a medical chatbot in the field of early PC detection is readily accepted and benefits patients as an additional informative tool.

5.
Br J Cancer ; 129(1): 112-121, 2023 07.
Article En | MEDLINE | ID: mdl-37120670

BACKGROUND: Detection of circulating tumour DNA (ctDNA) in biological fluids is a minimally invasive alternative to tissue biopsy for therapy monitoring. Cytokines are released in the tumour microenvironment to influence inflammation and tumorigenic mechanisms. Here, we investigated the potential biomarker utility of circulating cytokines vis-à-vis ctDNA in ALK-rearranged+ lung adenocarcinoma (ALK + NSCLC) and explored the optimal combination of molecular parameters that could indicate disease progression. METHODS: Longitudinal serum samples (n = 296) were collected from ALK + NSCLC patients (n = 38) under tyrosine kinase inhibitor (TKI) therapy and assayed to quantify eight cytokines: IFN-γ, IL-1ß, IL-6, IL-8, IL-10, IL-12p70, MCP1 and TNF-α. Generalised linear mixed-effect modelling was performed to test the performance of different combinations of cytokines and previously determined ctDNA parameters in identifying progressive disease. RESULTS: Serum IL-6, IL-8 and IL-10 were elevated at progressive disease, with IL-8 having the most significant impact as a biomarker. Integrating changes in IL-8 with ctDNA parameters maximised the performance of the classifiers in identifying disease progression, but this did not significantly outperform the model based on ctDNA alone. CONCLUSIONS: Serum cytokine levels are potential disease progression markers in ALK + NSCLC. Further validation in a larger and prospective cohort is necessary to determine whether the addition of cytokine evaluation could improve current tumour monitoring modalities in the clinical setting.


Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Circulating Tumor DNA/genetics , Interleukin-10/genetics , Cytokines/genetics , Interleukin-6/genetics , Interleukin-8/genetics , Prospective Studies , Protein Kinase Inhibitors/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Receptor Protein-Tyrosine Kinases/genetics , Disease Progression , Mutation , Tumor Microenvironment
7.
Clin Epigenetics ; 14(1): 163, 2022 12 02.
Article En | MEDLINE | ID: mdl-36461127

BACKGROUND: DNA methylation (5-mC) signals in cell-free DNA (cfDNA) of cancer patients represent promising biomarkers for minimally invasive tumor detection. The high abundance of cancer-associated 5-mC alterations permits parallel and highly sensitive assessment of multiple 5-mC biomarkers. Here, we performed genome-wide 5-mC profiling in the plasma of metastatic ALK-rearranged non-small cell lung cancer (NSCLC) patients receiving tyrosine kinase inhibitor therapy. We established a strategy to identify ALK-specific 5-mC changes from cfDNA and demonstrated the suitability of the identified markers for cancer detection, prognosis, and therapy monitoring. METHODS: Longitudinal plasma samples (n = 79) of 21 ALK-positive NSCLC patients and 13 healthy donors were collected alongside 15 ALK-positive tumor tissue and 10 healthy lung tissue specimens. All plasma and tissue samples were analyzed by cell-free DNA methylation immunoprecipitation sequencing to generate genome-wide 5-mC profiles. Information on genomic alterations (i.e., somatic mutations/fusions and copy number alterations) determined in matched plasma samples was available from previous studies. RESULTS: We devised a strategy that identified tumor-specific 5-mC biomarkers by reducing 5-mC background signals derived from hematopoietic cells. This was followed by differential methylation analysis (cases vs. controls) and biomarker validation using 5-mC profiles of ALK-positive tumor tissues. The resulting 245 differentially methylated regions were enriched for lung adenocarcinoma-specific 5-mC patterns in TCGA data and indicated transcriptional repression of several genes described to be silenced in NSCLC (e.g., PCDH10, TBX2, CDO1, and HOXA9). Additionally, 5-mC-based tumor DNA (5-mC score) was highly correlated with other genomic alterations in cell-free DNA (Spearman, ρ > 0.6), while samples with high 5-mC scores showed significantly shorter overall survival (log-rank p = 0.025). Longitudinal 5-mC scores reflected radiologic disease assessments and were significantly elevated at disease progression compared to the therapy start (p = 0.0023). In 7 out of 8 instances, rising 5-mC scores preceded imaging-based evaluation of disease progression. CONCLUSION: We demonstrated a strategy to identify 5-mC biomarkers from the plasma of cancer patients and integrated them into a quantitative measure of cancer-associated 5-mC alterations. Using longitudinal plasma samples of ALK-positive NSCLC patients, we highlighted the suitability of cfDNA methylation for prognosis and therapy monitoring.


Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Lung Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation , Lung Neoplasms/genetics , Biomarkers, Tumor/genetics , Disease Progression , Receptor Protein-Tyrosine Kinases/genetics
8.
Cancers (Basel) ; 14(24)2022 Dec 11.
Article En | MEDLINE | ID: mdl-36551580

Current strategies for the clinical management of prostate cancer are inadequate for a precise risk stratification between indolent and aggressive tumors. Recently developed tissue-based molecular biomarkers have refined the risk assessment of the disease. The characterization of tissue biopsy components and subsequent identification of relevant tissue-based molecular alterations have the potential to improve the clinical decision making and patient outcomes. However, tissue biopsies are invasive and spatially restricted due to tumor heterogeneity. Therefore, there is an urgent need for complementary diagnostic and prognostic options. Liquid biopsy approaches are minimally invasive with potential utility for the early detection, risk stratification, and monitoring of tumors. In this review, we focus on tissue and liquid biopsy biomarkers for early diagnosis and risk stratification of prostate cancer, including modifications on the genomic, epigenomic, transcriptomic, and proteomic levels. High-risk molecular alterations combined with orthogonal clinical parameters can improve the identification of aggressive tumors and increase patient survival.

9.
Front Oncol ; 12: 1010660, 2022.
Article En | MEDLINE | ID: mdl-36387148

Introduction: PD-(L)1 inhibitors (IO) have improved the prognosis of non-small-cell lung cancer (NSCLC), but more reliable predictors of efficacy and immune-related adverse events (irAE) are urgently needed. Cytokines are important effector molecules of the immune system, whose potential clinical utility as biomarkers remains unclear. Methods: Serum samples from patients with advanced NSCLC receiving IO either alone in the first (1L, n=46) and subsequent lines (n=50), or combined with chemotherapy (ICT, n=108) were analyzed along with age-matched healthy controls (n=15) at baseline, after 1 and 4 therapy cycles, and at disease progression (PD). Patients were stratified in rapid progressors (RP, progression-free survival [PFS] <120 days), and long-term responders (LR, PFS >200 days). Cytometric bead arrays were used for high-throughput quantification of 20 cytokines and other promising serum markers based on extensive search of the current literature. Results: Untreated NSCLC patients had increased levels of various cytokines and chemokines, like IL-6, IL-8, IL-10, CCL5, G-CSF, ICAM-1, TNF-RI and VEGF (fold change [FC]=1.4-261, p=0.026-9x10-7) compared to age-matched controls, many of which fell under ICT (FC=0.2-0.6, p=0.014-0.002), but not under IO monotherapy. Lower baseline levels of TNF-RI were associated with longer PFS (hazard ratio [HR]= 0.42-0.54; p=0.014-0.009) and overall survival (HR=0.28-0.34, p=0.004-0.001) after both ICT and IO monotherapy. Development of irAE was associated with higher baseline levels of several cytokines, in particular of IL-1ß and angiogenin (FC=7-9, p=0.009-0.0002). In contrast, changes under treatment were very subtle, there were no serum correlates of radiologic PD, and no association between dynamic changes in cytokine concentrations and clinical outcome. No relationship was noted between the patients' serologic CMV status and serum cytokine levels. Conclusions: Untreated NSCLC is characterized by increased blood levels of several pro-inflammatory and angiogenic effectors, which decrease under ICT. Baseline serum cytokine levels could be exploited for improved prediction of subsequent IO benefit (in particular TNF-RI) and development of irAE (e.g. IL-1ß or angiogenin), but they are not suitable for longitudinal disease monitoring. The potential utility of IL-1/IL-1ß inhibitors in the management and/or prevention of irAE in NSCLC warrants investigation.

10.
Article En | MEDLINE | ID: mdl-36207130

Large-cell neuroendocrine lung carcinoma (LCNEC) is a high-grade neoplasm with median survival of 1 year and limited therapeutic options. Here, we report the unusual case of a 47-yr-old female smoker with stage IV LCNEC featuring EML4-ALK variant 2 (E20:A20), wild-type TP53/RB1, and low tumor mutational burden of 3.91 mut/Mb. Despite early progression within 3 mo under crizotinib, a durable response was achieved with alectinib. Oligoprogression in the left breast 10 mo later was treated by surgery, followed by a switch to ceritinib upon multifocal progression and detection of ALK:p.V1180L in the mastectomy specimen, but without success. Another rebiopsy revealed ALK:p.L1196M, but the tumor did not respond to brigatinib or carboplatin/pemetrexed, before stabilization under lorlatinib. Diffuse progression 8 mo later with detection of ALK :p.L1196M/p.G1202R and p.L1196M/ p.D1203N evolving from the previous p.L1196M did not respond to chemoimmunotherapy, and the patient succumbed with an overall survival (OS) of 37 mo. This case illustrates the importance of molecular profiling for LCNEC regardless of smoking status, and the superiority of next-generation ALK inhibitors compared to crizotinib for ALK+ cases. Lorlatinib retained efficacy in the heavily pretreated setting, whereas its upfront use could possibly have prevented the stepwise emergence of compound ALK mutations. Furthermore, the disease course was more aggressive and OS shorter compared to the V2/TP53wt ALK+ lung adenocarcinoma, whereas crizotinib, ceritinib, and brigatinib did not confer the benefit expected according to next-generation sequencing results, which also underline the need for more potent drugs against ALK in the high-risk setting of neuroendocrine histology.


Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Carcinoma , Lung Neoplasms , Female , Humans , Crizotinib/therapeutic use , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Receptor Protein-Tyrosine Kinases/genetics , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Mastectomy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lactams, Macrocyclic/therapeutic use , Lactams, Macrocyclic/pharmacology , Mutation , Lung/pathology
11.
Cancers (Basel) ; 14(4)2022 Feb 10.
Article En | MEDLINE | ID: mdl-35205634

Multiparametric magnetic resonance imaging (mpMRI) and MRI/ultrasound fusion-targeted prostate biopsy (FB) have excellent sensitivity in detecting significant prostate cancer (sPC). FB platforms can be distinguished by rigid (RTB) or elastic image registration (ETB). We compared RTB and ETB by analyzing sPC detection rates of both RTB and ETB at different stages of the surgeons' learning curve. Patients undergoing RTB between 2015-2017 (n = 502) were compared to patients undergoing ETB from 2017-2019 (n = 437). SPC detection rates were compared by Chi-square-test on patient-basis. Combination of transperineal systematic biopsy and each TB served as reference and sub-analyses were performed for different grades of surgeon's experience. In the RTB subgroup, 233 men (46%) had sPC, compared to 201 (46%) in the ETB subgroup. RTB alone detected 94% of men with sPC and ETB 87% (p = 0.02). However, for at least intermediate-experienced surgeons (>100 FB), no differences occurred between RTB and ETB. In the total cohort, at least intermediate-experienced surgeons detected significantly more sPC (10%, p = 0.008) than novices. Thus, targeted transperineal MRI/TRUS-FB with a RTB registration system showed a similar sPC detection rate to ETB in experienced surgeons but a superior sPC detection rate to ETB in the total cohort. Low-experienced surgeons seem to benefit from RTB.

12.
Urol Oncol ; 40(1): 8.e11-8.e18, 2022 01.
Article En | MEDLINE | ID: mdl-34325986

BACKGROUND: Mutations in DNA damage repair genes, in particular genes involved in homology-directed repair, define a subgroup of men with prostate cancer with a more unfavorable prognosis but a therapeutic vulnerability to PARP inhibition. In current practice, mutational testing of prostate cancer patients is commonly done late i.e., when the tumor is castration resistant. In addition, most sequencing panels do not include TP53, one of the most crucial tumor suppressor genes in human cancer. In this proof-of-concept study, we sought to extend the clinical use of these molecular markers by exploring the early prognostic impact of mutations in TP53 and DNA damage repair genes in men with primary, nonmetastatic prostate cancer undergoing radical prostatectomy (RPX). METHODS: Tumor specimens from a cohort of 68 RPX patients with intermediate (n = 11, 16.2%) or high-risk (n = 57, 83.8%) disease were analyzed by targeted next generation sequencing using a 37 DNA damage repair and checkpoint gene panel including TP53. Sequencing results were correlated to clinicopathologic variables as well as PSA persistence or time to PSA failure. In addition, the distribution of TP53 and DNA damage repair gene mutations was analyzed in three large publicly available datasets (TCGA, MSKCC and SU2C). RESULTS: Of 68 primary prostate cancers analyzed, 23 (33.8%) were found to harbor a mutation in either TP53 (n = 12, 17.6%) or a DNA damage repair gene (n = 11, 16.2%). The vast majority of these mutations (22 of 23, 95.7%) were detected in primary tumors from patients with high-risk features. These mutations were mutually exclusive in our cohort and additional data mining suggests an enrichment of DNA damage repair gene mutations in TP53 wild-type tumors. Mutations in either TP53 or a DNA damage repair gene were associated with a significantly worse prognosis after RPX. Importantly, the presence of TP53/DNA damage repair gene mutations was an independent risk factor for PSA failure or PSA persistence in multivariate Cox regression models. CONCLUSION: TP53 or DNA damage repair gene mutations are frequently detected in primary prostate cancer with high-risk features and define a subgroup of patients with an increased risk for PSA failure or persistence after RPX. The significant adverse impact of these alterations on patient prognosis may be exploited to identify men with prostate cancer who may benefit from a more intensified treatment.


DNA Repair/genetics , Mutation , Prostatic Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Humans , Male , Middle Aged , Prognosis , Proof of Concept Study
13.
NPJ Precis Oncol ; 5(1): 100, 2021 Dec 07.
Article En | MEDLINE | ID: mdl-34876698

Targeted kinase inhibitors improve the prognosis of lung cancer patients with ALK alterations (ALK+). However, due to the emergence of acquired resistance and varied clinical trajectories, early detection of disease progression is warranted to guide patient management and therapy decisions. We utilized 343 longitudinal plasma DNA samples from 43 ALK+ NSCLC patients receiving ALK-directed therapies to determine molecular progression based on matched panel-based targeted next-generation sequencing (tNGS), and shallow whole-genome sequencing (sWGS). ALK-related alterations were detected in 22 out of 43 (51%) patients. Among 343 longitudinal plasma samples analyzed, 174 (51%) were ctDNA-positive. ALK variant and fusion kinetics generally reflected the disease course. Evidence for early molecular progression was observed in 19 patients (44%). Detection of ctDNA at therapy baseline indicated shorter times to progression compared to cases without mutations at baseline. In patients who succumbed to the disease, ctDNA levels were highly elevated towards the end of life. Our results demonstrate the potential utility of these NGS assays in the clinical management of ALK+ NSCLC.

14.
Cancers (Basel) ; 13(22)2021 Nov 10.
Article En | MEDLINE | ID: mdl-34830770

Cell-free DNA (cfDNA) analysis using liquid biopsies is a non-invasive method to gain insights into the biology, therapy response, mechanisms of acquired resistance and therapy escape of various tumors. While it is well established that individual cancer treatment options can be adjusted by panel next-generation sequencing (NGS)-based evaluation of driver mutations in cfDNA, emerging research additionally explores the value of deep characterization of tumor cfDNA genomics and fragmentomics as well as nucleosome modifications (chromatin structure), and methylation patterns (epigenomics) for comprehensive and multi-modal assessment of cfDNA. These tools have the potential to improve disease monitoring, increase the sensitivity of minimal residual disease identification, and detection of cancers at earlier stages. Recent progress in emerging technologies of cfDNA analysis is summarized, the added potential clinical value is highlighted, strengths and limitations are identified and compared with conventional targeted NGS analysis, and current challenges and future directions are discussed.

15.
Transl Lung Cancer Res ; 10(5): 2118-2131, 2021 May.
Article En | MEDLINE | ID: mdl-34164264

BACKGROUND: Liquid rebiopsies can detect resistance mutations to guide therapy of anaplastic lymphoma kinase-rearranged (ALK+) non-small-cell lung cancer (NSCLC) failing tyrosine kinase inhibitors (TKI). Here, we analyze how their results relate to the anatomical pattern of disease progression and patient outcome. METHODS: Clinical, molecular, and radiologic characteristics of consecutive TKI-treated ALK+ NSCLC patients were analyzed using prospectively collected plasma samples and the 17-gene targeted AVENIO kit, which covers oncogenic drivers and all TP53 exons. RESULTS: In 56 patients, 139 instances of radiologic changes were analyzed, of which 133 corresponded to disease progression. Circulating tumor DNA (ctDNA) alterations were identified in most instances of extracranial progression (58/94 or 62%), especially if concomitant intracranial progression was also present (89%, P<0.001), but rarely in case of isolated central nervous system (CNS) progression (8/39 or 21%, P<0.001). ctDNA detectability correlated with presence of "short" echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion variants (mainly V3, E6:A20) and/or TP53 mutations (P<0.05), and presented therapeutic opportunities in <50% of cases. Patients with extracranial progression and positive liquid biopsies had shorter survival from the start of palliative treatment (mean 52 vs. 69 months, P=0.002), regardless of previous and subsequent therapy and initial ECOG performance status. Furthermore, for patients with extracranial progression, ctDNA detectability was associated with shorter next-line progression-free survival (PFS) (3 vs. 13 months, P=0.003) if they were switched to another systemic therapy (49/86 samples), and with shorter time-to-next-treatment (TNT) (3 vs. 8 months, P=0.004) if they were continued on the same treatment due to oligoprogression (37/86). In contrast, ctDNA detectability was not associated with the outcome of patients showing CNS-only progression. In 6/6 cases with suspicion of non-neoplastic radiologic lung changes (mainly infection or pneumonitis), ctDNA results remained negative. CONCLUSIONS: Positive blood-based liquid rebiopsies in ALK+ NSCLC characterize biologically more aggressive disease and are common with extracranial, but rare with CNS-only progression or benign radiologic changes. These results reconcile the increased detection of ALK resistance mutations with other features of the high-risk EML4-ALK V3-associated phenotype. Conversely, most oligoprogressive patients with negative liquid biopsies have a more indolent course without need for early change of systemic treatment.

16.
Front Oncol ; 11: 670483, 2021.
Article En | MEDLINE | ID: mdl-33959513

BACKGROUND: Anaplastic lymphoma kinase-rearranged non-small-cell lung cancer (ALK+ NSCLC) is a model disease for use of targeted therapies (TKI), which are administered sequentially to maximize patient survival. METHODS: We retrospectively analyzed the flow of 145 consecutive TKI-treated ALK+ NSCLC patients across therapy lines. Suitable patients that could not receive an available next-line therapy ("attrition") were determined separately for various treatments, based on the approval status of the respective targeted drugs when each treatment failure occurred in each patient. RESULTS: At the time of analysis, 70/144 (49%) evaluable patients were still alive. Attrition rates related to targeted treatments were approximately 25-30% and similar for administration of a second-generation (2G) ALK inhibitor (22%, 17/79) or any subsequent systemic therapy (27%, 27/96) after crizotinib, and for the administration of lorlatinib (27%, 6/22) or any subsequent systemic therapy (25%, 15/61) after any 2G TKI. The rate of chemotherapy implementation was 67% (62/93). Both administration of additional TKI (median overall survival [mOS] 59 vs. 41 months for multiple vs. one TKI lines, logrank p=0.002), and chemotherapy (mOS 41 vs. 16 months, logrank p<0.001) were significantly associated with longer survival. Main reason for patients foregoing any subsequent systemic treatment was rapid clinical deterioration (n=40/43 or 93%) caused by tumor progression. In 2/3 of cases (29/43), death occurred under the first failing therapy, while in 11/43 the treatment was switched, but the patient did not respond, deteriorated further, and died within 8 weeks. CONCLUSIONS: Despite absence of regulatory obstacles and no requirement for specific acquired mutations, 25-30% of ALK+ NSCLC patients forego subsequent systemic therapy due to rapid clinical deterioration, in several cases (approximately 1/3) associated with an ineffective first next-line choice. These results underline the need for closer patient monitoring and broader profiling in order to support earlier and better directed use of available therapies.

17.
Cancers (Basel) ; 13(5)2021 Feb 25.
Article En | MEDLINE | ID: mdl-33669024

About 50% of prostate cancer (PCa) tumors are TMPRSS2:ERG (T2E) fusion-positive (T2E+), but the role of T2E in PCa progression is not fully understood. We were interested in investigating epigenomic alterations associated with T2E+ PCa. Using different sequencing cohorts, we found several transcripts of the miR-449 cluster to be repressed in T2E+ PCa. This repression correlated strongly with enhanced expression of NOTCH and several of its target genes in TCGA and ICGC PCa RNA-seq data. We corroborated these findings using a cellular model with inducible T2E expression. Overexpression of miR-449a in vitro led to silencing of genes associated with NOTCH signaling (NOTCH1, HES1) and HDAC1. Interestingly, HDAC1 overexpression led to the repression of HES6, a negative regulator of the transcription factor HES1, the primary effector of NOTCH signaling, and promoted cell proliferation by repressing the cell cycle inhibitor p21. Inhibition of NOTCH as well as knockdown of HES1 reduced the oncogenic properties of PCa cell lines. Using tissue microarray analysis encompassing 533 human PCa cores, ERG-positive areas exhibited significantly increased HES1 expression. Taken together, our data suggest that an epigenomic regulatory network enhances NOTCH signaling and thereby contributes to the oncogenic properties of T2E+ PCa.

18.
Genes Chromosomes Cancer ; 60(7): 489-497, 2021 07.
Article En | MEDLINE | ID: mdl-33686791

Pancreatic cysts or dilated pancreatic ducts are often found by cross-sectional imaging, but only mucinous lesions can become malignant. Therefore, distinction between mucinous and non-mucinous lesions is crucial for adequate patient management. We performed a prospective study including targeted next generation sequencing (NGS) of cell-free DNA in the diagnostic endoscopic ultrasound (EUS)-guided workup. Pancreatic cyst(s) or main duct fluid obtained by EUS-guided FNA was analysed by carcinoembryonic antigen (CEA), cytology and deep targeted NGS of 14 known gastrointestinal cancer genes (AKT1, BRAF, CTNNB1, EGFR, ERBB2, FBXW7, GNAS, KRAS, MAP2K1, NRAS, PIK3CA, SMAD4, TP53, APC) with a limit of detection down to variant allele frequency of 0.01%. Results were correlated to histopathology and clinical follow-up. One hundred and thirteen patients with pancreatic cyst(s) and/or a dilated pancreatic main duct (≥5 mm) were screened. Sixty-six patients had to be excluded, mainly due to inoperability or small cyst size (≤10 mm). Forty-seven patients were enrolled for further analysis. A final diagnosis was available in 27 cases including 8 negative controls. In 43/47 (91.5%) of patients a KRAS- and/or GNAS-mutation was diagnosed by NGS. 27.0% of the KRAS-mutated and 10.0% of the GNAS-mutated lesions harbored multiple mutations. KRAS/GNAS-testing by NGS, cytology, and CEA had a sensitivity and specificity of 94.7/100%, 38.1/100%, and 42.1/75.0%, respectively. KRAS/GNAS-testing was significantly superior to CEA (P = .0209) and cytology (P = .0016). In conclusion, KRAS/GNAS-testing by deep targeted NGS is a suitable method to distinguish mucinous from non-mucinous pancreatic lesions, suggesting its usage as a single diagnostic test. Results must be confirmed in a larger cohort.


Chromogranins/genetics , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , GTP-Binding Protein alpha Subunits, Gs/genetics , High-Throughput Nucleotide Sequencing/methods , Neoplasms, Cystic, Mucinous, and Serous/genetics , Pancreatic Cyst/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Aged , Aged, 80 and over , Endoscopic Ultrasound-Guided Fine Needle Aspiration/standards , Female , Genetic Testing/methods , Genetic Testing/standards , High-Throughput Nucleotide Sequencing/standards , Humans , Male , Middle Aged , Neoplasms, Cystic, Mucinous, and Serous/diagnostic imaging , Neoplasms, Cystic, Mucinous, and Serous/pathology , Pancreatic Cyst/diagnostic imaging , Pancreatic Cyst/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Sensitivity and Specificity , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards
19.
Am J Pathol ; 191(4): 618-630, 2021 04.
Article En | MEDLINE | ID: mdl-33485866

CD24 is overexpressed in many human cancers and is a driver of tumor progression. Herein, molecular mechanisms leading to up-regulation of CD24 in prostate cancer were studied. DNA methylation of the CD24 gene promoter at four loci using quantitative methylation-specific PCR was evaluated. Expression of CD24 in tumor tissues was studied by immunohistochemistry. To corroborate the results in vitro, ERG-inducible LNCaP TMPRSS2:ERG (T2E) cells and luciferase promoter assays were used. DNA methylation of the CD24 promoter was significantly higher in tumors than in benign tissue and was associated with biochemical recurrence-free survival, tumor grade, and stage. CD24 mRNA and protein expression were significantly higher in T2E-positive, ERG-overexpressing, and/or PTEN-deficient cases. Higher levels of CD24 protein expression conferred shorter biochemical recurrence-free survival, and these observations were confirmed using The Cancer Genome Atlas prostate adenocarcinoma data. In silico analysis of the CD24 promoter revealed an ERG binding site in between the DNA methylation sites. ERG overexpression led to a strong induction of CD24 mRNA and protein expression. Luciferase promoter assays using the wild-type and mutated ERG binding site within the CD24 promoter showed ERG-dependent activation. Collectively, our results suggest that promoter DNA methylation of the CD24 gene and T2E fusion status are factors involved in the up-regulation of CD24 in patients with prostate cancer.


CD24 Antigen/metabolism , DNA/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcriptional Regulator ERG/metabolism , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Cell Line, Tumor , DNA Methylation/physiology , Humans , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Trans-Activators/genetics , Transcriptional Regulator ERG/genetics
20.
EBioMedicine ; 62: 103103, 2020 Dec.
Article En | MEDLINE | ID: mdl-33161228

BACKGROUND: Targeted therapies (TKI) have improved the prognosis of ALK-rearranged lung cancer (ALK+ NSCLC), but clinical courses vary widely. Early identification and molecular characterisation of treatment failure have key importance for subsequent therapies. We performed copy number variation (CNV) profiling and targeted panel sequencing from cell-free DNA (cfDNA) to monitor ALK+ NSCLC. METHODS: 271 longitudinal plasma DNA samples from 73 patients with TKI-treated metastatic ALK+ NSCLC were analysed by capture-based targeted (average coverage 4,100x), and shallow whole genome sequencing (sWGS, 0.5x). Mutations were called using standard algorithms. CNVs were quantified using the trimmed median absolute deviation from copy number neutrality (t-MAD). FINDINGS: cfDNA mutations were identified in 58% of patients. They included several potentially actionable alterations, e.g. in the genes BRAF, ERBB2, and KIT. sWGS detected CNVs in 18% of samples, compared to 6% using targeted sequencing. Several of the CNVs included potentially druggable targets, such as regions harboring EGFR, ERBB2, and MET. Circulating tumour DNA (ctDNA) mutations and t-MAD scores increased during treatment, correlated with markers of higher molecular risk, such as the EML4-ALK variant 3 and/or TP53 mutations, and were associated with shorter patient survival. Importantly, t-MAD scores reflected the tumour remission status in serial samples similar to mutant ctDNA allele frequencies, and increased with disease progression in 79% (34/43) of cases, including those without detectable single nucleotide variant (SNV). INTERPRETATION: Combined copy number and targeted mutation profiling could improve monitoring of ALK+ NSCLC. Potential advantages include the identification of treatment failure, in particular for patients without detectable mutations, and broader detection of genomic changes acquired during therapy, especially in later treatment lines and in high-risk patients. FUNDING: This work was supported by the German Center for Lung Research (DZL), by the German Cancer Consortium (DKTK), by the Heidelberg Center for Personalized Oncology at the German Cancer Research Center (DKFZ-HIPO), and by Roche Sequencing Solutions (Pleasanton, CA, USA).


Circulating Tumor DNA , DNA Copy Number Variations , Lung Neoplasms/genetics , Mutation , Aged , Biomarkers, Tumor , Female , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Male , Middle Aged , Molecular Targeted Therapy/adverse effects , Molecular Targeted Therapy/methods , Prognosis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Treatment Outcome
...